login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218016
Triangle, read by rows, where T(n,k) = k!*C(n, k)*5^(n-k) for n>=0, k=0..n.
4
1, 5, 1, 25, 10, 2, 125, 75, 30, 6, 625, 500, 300, 120, 24, 3125, 3125, 2500, 1500, 600, 120, 15625, 18750, 18750, 15000, 9000, 3600, 720, 78125, 109375, 131250, 131250, 105000, 63000, 25200, 5040, 390625, 625000, 875000, 1050000, 1050000, 840000, 504000, 201600, 40320
OFFSET
0,2
COMMENTS
Triangle formed by the derivatives of x^n evaluated at x=5.
Sum(T(n,k), k=0..n) = A080954(n) (see the Formula section of A080954). . Also:
first column: A000351;
second column: A053464;
third column: 2*A084902;
fourth column: 6*A081143.
LINKS
Vincenzo Librandi, Rows n = 0..100, flattened
FORMULA
T(n,k) = 5^(n-k)*n!/(n-k)! for n>=0, k=0..n.
E.g.f. (by columns): exp(5x)*x^k.
EXAMPLE
Triangle begins:
1;
5, 1;
25, 10, 2;
125, 75, 30, 6;
625, 500, 300, 120, 24;
3125, 3125, 2500, 1500, 600, 120;
15625, 18750, 18750, 15000, 9000, 3600, 720;
78125, 109375, 131250, 131250, 105000, 63000, 25200, 5040;
390625, 625000, 875000, 1050000, 1050000, 840000, 504000, 201600, 40320; etc.
MATHEMATICA
Flatten[Table[n!/(n-k)!*5^(n-k), {n, 0, 10}, {k, 0, n}]]
PROG
(Magma) [Factorial(n)/Factorial(n-k)*5^(n-k): k in [0..n], n in [0..10]];
KEYWORD
nonn,tabl,easy
AUTHOR
Vincenzo Librandi, Nov 10 2012
STATUS
approved