login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A080954 E.g.f. exp(5x)/(1-x). 8
1, 6, 37, 236, 1569, 10970, 81445, 648240, 5576545, 52142030, 531185925, 5891873300, 70946620225, 923526766050, 12935478240325, 194062691183000, 3105155646818625, 52788408935369750, 950195175533921125 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Binomial transform of A053487. 4th Binomial transform of A000522. Fifth binomial transform of n! = A000142.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

FORMULA

a(n) = n! * Sum_{k=0..n} 5^k/k!.

a(n) is the permanent of the n X n matrix with 6's on the diagonal and 1's elsewhere. a(n) = Sum_{k=0..n} A008290(n, k)*6^k). - Philippe Deléham, Dec 12 2003

Conjecture: -a(n) + (n+5)*a(n-1) + 5*(1-n)*a(n-2) = 0. - R. J. Mathar, Nov 14 2011

a(n) ~ n!*exp(5). - Vaclav Kotesovec, Oct 13 2012

a(0)=0, a(n) = n * a(n-1) + 5^n. - Vincenzo Librandi, Nov 15 2012

MAPLE

F(x):= exp(5*x)/(1-x): f[0]:=F(x): for n from 1 to 20 do f[n]:=diff(f[n-1], x) od: x:=0: seq(f[n], n=0..18); # Zerinvary Lajos, Apr 03 2009

MATHEMATICA

With[{nn=20}, CoefficientList[Series[Exp[5x]/(1-x), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Sep 19 2011 *)

Table[n!*Sum[5^k/k!, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 28 2012 *)

RecurrenceTable[{a[0]==1, a[n]==n*a[n-1] + 5^n}, a, {n, 20}] (* Vincenzo Librandi, Nov 15 2012 *)

CROSSREFS

Cf. A008290, A010842, A053486.

Sequence in context: A154623 A196834 A005389 * A271905 A073013 A192238

Adjacent sequences:  A080951 A080952 A080953 * A080955 A080956 A080957

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Feb 26 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 30 09:21 EDT 2020. Contains 334717 sequences. (Running on oeis4.)