login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080952
a(n) = 2^(n-4)*(n+2)*(n+3)*(n+4)*(n+5)*(n+6)/15.
2
3, 21, 112, 504, 2016, 7392, 25344, 82368, 256256, 768768, 2236416, 6336512, 17547264, 47628288, 127008768, 333398016, 862912512, 2205220864, 5571084288, 13927710720, 34487664640, 84651540480, 206108098560, 498094571520
OFFSET
0,1
COMMENTS
Old definition was "Sequence associated with recurrence a(n) = 2*a(n-1) + k*(k+2)*a(n-2)". See the first comment in A080928.
The sixth column of A080928 (after 0) is 2*a(n).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..300 from Vincenzo Librandi)
FORMULA
G.f.: (1-x)*(4*x^2-2*x+1)*(4*x^2-6*x+3)/(1-2x)^6.
a(n) = 12*a(n-1) - 60*a(n-2) + 160*a(n-3) - 240*a(n-4) + 192*a(n-5) - 64*a(n-6), n>=6. - Harvey P. Dale, Jun 11 2011
Let b(n) = A000292(n+1)+n+1+A000389(n+5) = (n+1)*(n^4+14*n^3+91*n^2+254*n+360)/120 = 3, 12, 34, 80, 166, 314,.. Then a(n) = 2^n*b(n) - 2^(n-1)*b(n-1). - R. J. Mathar, Jun 11 2011
From Amiram Eldar, Jan 07 2022: (Start)
Sum_{n>=0} 1/a(n) = 40*log(2) - 82/3.
Sum_{n>=0} (-1)^n/a(n) = 1314 - 3240*log(3/2). (End)
MATHEMATICA
LinearRecurrence[{12, -60, 160, -240, 192, -64}, {3, 21, 112, 504, 2016, 7392}, 30] (* or *) CoefficientList[Series[(1-x) (3 - 12 x + 28 x^2 - 32 x^3 + 16 x^4)/ (1 - 2 x)^6, {x, 0, 30}], x] (* Harvey P. Dale, Jun 11 2011 *)
PROG
(Magma) I:=[3, 21, 112, 504, 2016, 7392]; [n le 6 select I[n] else 12*Self(n-1)-60*Self(n-2)+160*Self(n-3)-240*Self(n-4)+192*Self(n-5)-64*Self(n-6): n in [1..30]]; // Vincenzo Librandi, Aug 06 2013
(PARI) my(x='x+O('x^50)); Vec((1-x)*(4*x^2-2*x+1)*(4*x^2-6*x+3)/(1-2*x)^6) \\ G. C. Greubel, Nov 24 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Feb 26 2003
EXTENSIONS
Replaced the previous definition with the closed form from Bruno Berselli, Aug 06 2013
STATUS
approved