login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A335157 Define b(n) by 1/sm(w) = Sum_{n >= 0} b(3*n-1)*w^(3*n-1), where sm(w) is the elliptic function defined in A104133; a(n) = numerator of b(3*n-1). 3
1, 1, -1, -1, 11, 1, -193, -5, 3851, 449, -16493, -17093, 2776513483, 2766847, -18326878991, -284903947, 313476755027, 15306883537, -5759963886461, -549822999679, 43471527926977757, 649802711643571, -53651420037921807347, -278016083032863199, 164833044827776566977996843 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Note that the expansions of 1/sm(w) and cm(w)/sm(w) on page 4 of the Adams reference agree apart from signs.

REFERENCES

Oscar S. Adams, Elliptic Functions Applied to Conformal World Maps, Special Publication No. 112 of the U.S. Coast and Geodetic Survey, 1925. See pp. 3-4.

LINKS

Table of n, a(n) for n=0..24.

EXAMPLE

1/sm(w) = w^(-1) + (1/6)*w^2 - (1/252)*w^5 - (1/4536)*w^8 + (11/2476656)*w^11 + (1/3714984)*w^14 - (193/35574686784)*w^17 - (5/15246294336)*w^20 + (3851/582713369521920)*w^23 + (449/1123804355506560)*w^26 - ...

PROG

(PARI) anum(nn) = my(A = O(x)); for(i=0, nn, A = intformal( (1 - intformal(A^2))^2) ); my(v=Vec(1/A)); apply(x->numerator(x), vector(#v\3, k, v[3*k-2]));

CROSSREFS

Cf. A104133 (sm), A104134 (cm), A335158 (denominators).

See also A335180, A335181.

Sequence in context: A038315 A218018 A093158 * A330077 A132098 A223513

Adjacent sequences:  A335154 A335155 A335156 * A335158 A335159 A335160

KEYWORD

sign,frac

AUTHOR

Michel Marcus and N. J. A. Sloane, Jun 08 2020.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 22 01:28 EST 2022. Contains 350481 sequences. (Running on oeis4.)