OFFSET
0,5
COMMENTS
Dispersed Dyck paths are Motzkin paths with no (1,0) steps at positive heights. An ascent is a maximal sequence of consecutive (1,1)-steps.
The number of UU-equivalence classes of Łukasiewicz paths. Łukasiewicz paths are UU-equivalent iff the positions of pattern UU are identical in these paths. - Sergey Kirgizov, Apr 08 2018
LINKS
Gheorghe Coserea, Table of n, a(n) for n = 0..300
J.-L. Baril, R. Genestier, A. Giorgetti, and A. Petrossian, Rooted planar maps modulo some patternss, Preprint 2016.
Jean-Luc Baril, Sergey Kirgizov, and Armen Petrossian, Enumeration of Łukasiewicz paths modulo some patterns, arXiv:1804.01293 [math.CO], 2018.
J.-L. Baril and A. Petrossian, Equivalence Classes of Motzkin Paths Modulo a Pattern of Length at Most Two, J. Int. Seq. 18 (2015) 15.7.1
K. Manes, A. Sapounakis, I. Tasoulas, and P. Tsikouras, Equivalence classes of ballot paths modulo strings of length 2 and 3, arXiv:1510.01952 [math.CO], 2015.
Helmut Prodinger, Dispersed Dyck paths revisited, arXiv:2402.13026 [math.CO], 2024. See p. 3.
FORMULA
a(n) = A191384(n,0).
G.f.: g(z) = ((1-z)^2 - sqrt((1+z^2)*(1-3*z^2)))/(2*z*(z^3-(1-z)^2)).
a(n-1) = Sum_{m=floor((n+1)/2)..n} ((2*m-n)*sum(j=2*m-n..m, binomial(n-2*m+2*j-1,j-1)*(-1)^(j-m)*binomial(m,j)))/m. - Vladimir Kruchinin, Mar 09 2013
Recurrence: (n+1)*a(n) = 2*(n+1)*a(n-1) + (n-5)*a(n-2) - 3*(n-3)*a(n-3) + (5*n-19)*a(n-4) - 2*(4*n-17)*a(n-5) + 3*(n-5)*a(n-6) - 3*(n-5)*a(n-7). - Vaclav Kotesovec, Mar 21 2014
a(n) ~ 3^(n/2+1) * (7*sqrt(3)+12 +(-1)^n*(7*sqrt(3)-12)) / (n^(3/2)*sqrt(2*Pi)). - Vaclav Kotesovec, Mar 21 2014
EXAMPLE
a(5)=3 because we have HHHHH, HUUDD, and UUDDH, where U=(1,1), D=(1,-1), and H=(1,0).
MAPLE
g := (((1-z)^2-sqrt((1+z^2)*(1-3*z^2)))*1/2)/(z*(z^3-(1-z)^2)): gser := series(g, z = 0, 45): seq(coeff(gser, z, n), n = 0 .. 42);
MATHEMATICA
CoefficientList[Series[(((1-x)^2-Sqrt[(1+x^2)*(1-3*x^2)])*1/2)/(x*(x^3-(1-x)^2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 21 2014 *)
PROG
(PARI)
seq(N) = {
my(x='x+O('x^N), A001006 = (1 - x - sqrt(1-2*x-3*x^2))/(2*x^2),
y=subst(A001006, 'x, 'x^2));
Vec((1+x^2*y) / (1-x+x^2-x^3*y));
};
seq(43) \\ Gheorghe Coserea, Jan 06 2017
CROSSREFS
KEYWORD
nonn,walk
AUTHOR
Emeric Deutsch, Jun 01 2011
STATUS
approved