login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191385
Number of dispersed Dyck paths of length n having no ascents of length 1.
3
1, 1, 1, 1, 2, 3, 5, 7, 12, 18, 31, 47, 81, 125, 216, 337, 583, 918, 1590, 2522, 4372, 6977, 12104, 19415, 33703, 54297, 94306, 152507, 265005, 429974, 747450, 1216297, 2115118, 3450817, 6002813, 9816460, 17080924, 27991422, 48718380, 79989880, 139252802, 229034820, 398806718
OFFSET
0,5
COMMENTS
Dispersed Dyck paths are Motzkin paths with no (1,0) steps at positive heights. An ascent is a maximal sequence of consecutive (1,1)-steps.
The number of UU-equivalence classes of Łukasiewicz paths. Łukasiewicz paths are UU-equivalent iff the positions of pattern UU are identical in these paths. - Sergey Kirgizov, Apr 08 2018
LINKS
J.-L. Baril, R. Genestier, A. Giorgetti, and A. Petrossian, Rooted planar maps modulo some patternss, Preprint 2016.
Jean-Luc Baril, Sergey Kirgizov, and Armen Petrossian, Enumeration of Łukasiewicz paths modulo some patterns, arXiv:1804.01293 [math.CO], 2018.
J.-L. Baril and A. Petrossian, Equivalence Classes of Motzkin Paths Modulo a Pattern of Length at Most Two, J. Int. Seq. 18 (2015) 15.7.1
K. Manes, A. Sapounakis, I. Tasoulas, and P. Tsikouras, Equivalence classes of ballot paths modulo strings of length 2 and 3, arXiv:1510.01952 [math.CO], 2015.
Helmut Prodinger, Dispersed Dyck paths revisited, arXiv:2402.13026 [math.CO], 2024. See p. 3.
FORMULA
a(n) = A191384(n,0).
G.f.: g(z) = ((1-z)^2 - sqrt((1+z^2)*(1-3*z^2)))/(2*z*(z^3-(1-z)^2)).
a(n-1) = Sum_{m=floor((n+1)/2)..n} ((2*m-n)*sum(j=2*m-n..m, binomial(n-2*m+2*j-1,j-1)*(-1)^(j-m)*binomial(m,j)))/m. - Vladimir Kruchinin, Mar 09 2013
Recurrence: (n+1)*a(n) = 2*(n+1)*a(n-1) + (n-5)*a(n-2) - 3*(n-3)*a(n-3) + (5*n-19)*a(n-4) - 2*(4*n-17)*a(n-5) + 3*(n-5)*a(n-6) - 3*(n-5)*a(n-7). - Vaclav Kotesovec, Mar 21 2014
a(n) ~ 3^(n/2+1) * (7*sqrt(3)+12 +(-1)^n*(7*sqrt(3)-12)) / (n^(3/2)*sqrt(2*Pi)). - Vaclav Kotesovec, Mar 21 2014
A(x) = (1 + x^2*A001006(x^2))/(1 - x + x^2 - x^3*A001006(x^2)). - Gheorghe Coserea, Jan 06 2017
EXAMPLE
a(5)=3 because we have HHHHH, HUUDD, and UUDDH, where U=(1,1), D=(1,-1), and H=(1,0).
MAPLE
g := (((1-z)^2-sqrt((1+z^2)*(1-3*z^2)))*1/2)/(z*(z^3-(1-z)^2)): gser := series(g, z = 0, 45): seq(coeff(gser, z, n), n = 0 .. 42);
MATHEMATICA
CoefficientList[Series[(((1-x)^2-Sqrt[(1+x^2)*(1-3*x^2)])*1/2)/(x*(x^3-(1-x)^2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 21 2014 *)
PROG
(PARI)
seq(N) = {
my(x='x+O('x^N), A001006 = (1 - x - sqrt(1-2*x-3*x^2))/(2*x^2),
y=subst(A001006, 'x, 'x^2));
Vec((1+x^2*y) / (1-x+x^2-x^3*y));
};
seq(43) \\ Gheorghe Coserea, Jan 06 2017
CROSSREFS
KEYWORD
nonn,walk
AUTHOR
Emeric Deutsch, Jun 01 2011
STATUS
approved