login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A345669
Antidiagonal sums of array containing i-bonacci sequences nac(i,n), where nac(i,n) is the n-th i-bonacci number with nac(i,1..i) = 1 (see comments).
1
1, 2, 3, 5, 7, 12, 18, 31, 51, 89, 153, 273, 483, 870, 1571, 2860, 5225, 9603, 17711, 32805, 60967, 113685, 212610, 398723, 749615, 1412585, 2667549, 5047345, 9567527, 18166272, 34546857, 65793343, 125471295, 239584610, 458028439, 876628109, 1679581899
OFFSET
1,2
COMMENTS
Antidiagonal sum of below array:
1, 1, 1, 1, 1, 1, ... (1-bonacci numbers)
1, 1, 2, 3, 5, 8, ... (2-bonacci or Fibonacci numbers)
1, 1, 1, 3, 5, 9, ... (3-bonacci or tribonacci numbers)
1, 1, 1, 1, 4, 7, ... (4-bonacci or tetranacci numbers)
...
FORMULA
a(n) = Sum_{i=1..n} of nac(i,n-i+1) = Sum_{i=1..n} of nac(n-i+1,i).
MAPLE
b:= proc(i, n) option remember; `if`(n=0, 0,
`if`(n<=i, 1, add(b(i, n-j), j=1..i)))
end:
a:= n-> add(b(i+1, n-i), i=0..n):
seq(a(n), n=1..37); # Alois P. Heinz, Jun 21 2021
MATHEMATICA
b[i_, n_] := b[i, n] = If[n == 0, 0, If[n <= i, 1, Sum[b[i, n - j], {j, 1, i}]]];
a[n_] := Sum[b[i + 1, n - i], {i, 0, n}];
Table[a[n], {n, 1, 37}] (* Jean-François Alcover, Dec 27 2022, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Christoph B. Kassir, Jun 21 2021
STATUS
approved