login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143642
Numerators of principal and intermediate convergents to 3^(1/2).
4
1, 2, 3, 5, 7, 12, 19, 26, 45, 71, 97, 168, 265, 362, 627, 989, 1351, 2340, 3691, 5042, 8733, 13775, 18817, 32592, 51409, 70226, 121635, 191861, 262087, 453948, 716035, 978122, 1694157, 2672279, 3650401, 6322680, 9973081, 13623482, 23596563, 37220045
OFFSET
1,2
REFERENCES
Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
LINKS
Clark Kimberling, Best lower and upper approximates to irrational numbers, Elemente der Mathematik, 52 (1997) 122-126.
FORMULA
From Colin Barker, Jul 28 2017: (Start)
G.f.: x*(1 + x)*(1 + x + 2*x^2 - x^3) / (1 - 4*x^3 + x^6).
a(n) = 4*a(n-3) - a(n-6) for n>6.
(End)
EXAMPLE
The first few principal and intermediate convergents to 3^(1/2) are 1/1, 2/1, 3/2, 5/3, 7/4, 12/7, ...
MATHEMATICA
LinearRecurrence[{0, 0, 4, 0, 0, -1}, {1, 2, 3, 5, 7, 12}, 40] (* Harvey P. Dale, May 12 2018 *)
PROG
(PARI) Vec(x*(1 + x)*(1 + x + 2*x^2 - x^3) / (1 - 4*x^3 + x^6) + O(x^60)) \\ Colin Barker, Jul 28 2017
CROSSREFS
Cf. A140827 (denominators).
Sequence in context: A374746 A345669 A335093 * A192685 A293543 A060986
KEYWORD
nonn,frac,easy
AUTHOR
Clark Kimberling, Aug 27 2008
STATUS
approved