login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143641
Odd prime-proof numbers (A118118) not ending in 5.
4
212159, 595631, 872897, 1203623, 1293671, 1566691, 1702357, 1830661, 3716213, 3964169, 4103917, 4134953, 4173921, 4310617, 4376703, 4586509, 4703801, 4749187, 4801387, 4928909, 5005353, 5051179, 5231739, 5258901, 5317573
OFFSET
1,1
COMMENTS
Most "prime-proof" numbers are even or multiples of 5, cf. A118118.
Nicol & Selfridge proved that this sequence is infinite. - Charles R Greathouse IV, Jan 27 2014
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..10000 (terms 1..3655 from Klaus Brockhaus)
Michael Filaseta, Mark Kozek, Charles Nicol and John Selfridge, Composites that remain composite after changing a digit, Journal of Combinatorics and Number Theory 2 (2011), pp. 25-36.
Project Euler, Problem 200: Prime-proof Squbes (2008).
PROG
(PARI) forstep( i=1, 10^7, 2, i%5 || next; isA118118(i) && print1(i", "))
(Magma) IsA143641:=function(n); D:=Intseq(n); return Intseq(n)[1] ne 5 and forall{ <k, j>: k in [1..#D], j in [0..9] | not IsPrime(Seqint(Insert(D, k, k, [j]))) }; end function; [ n: n in [1..4000000 by 2] | IsA143641(n) ]; // Klaus Brockhaus, Mar 03 2011
(Python)
from sympy import isprime
from itertools import count, islice
def selfplusneighs(n):
s = str(n); d = "0123456789"; L = len(s)
yield from (int(s[:i]+c+s[i+1:]) for c in d for i in range(L))
def agen():
for n in count(1, 2):
if n%5 == 0: continue
if all(not isprime(k) for k in selfplusneighs(n)):
yield n
print(list(islice(agen(), 8))) # Michael S. Branicky, Aug 16 2022
CROSSREFS
Cf. A118118.
Sequence in context: A231418 A246999 A186694 * A184383 A234829 A184652
KEYWORD
base,nonn
AUTHOR
M. F. Hasler, Aug 27 2008, Sep 04 2008
STATUS
approved