login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Odd prime-proof numbers (A118118) not ending in 5.
4

%I #27 Sep 28 2023 08:17:05

%S 212159,595631,872897,1203623,1293671,1566691,1702357,1830661,3716213,

%T 3964169,4103917,4134953,4173921,4310617,4376703,4586509,4703801,

%U 4749187,4801387,4928909,5005353,5051179,5231739,5258901,5317573

%N Odd prime-proof numbers (A118118) not ending in 5.

%C Most "prime-proof" numbers are even or multiples of 5, cf. A118118.

%C Nicol & Selfridge proved that this sequence is infinite. - _Charles R Greathouse IV_, Jan 27 2014

%H Michael S. Branicky, <a href="/A143641/b143641.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..3655 from Klaus Brockhaus)

%H Michael Filaseta, Mark Kozek, Charles Nicol and John Selfridge, <a href="http://www.math.sc.edu/~filaseta/papers/FKNSpaper0808.pdf">Composites that remain composite after changing a digit</a>, Journal of Combinatorics and Number Theory 2 (2011), pp. 25-36.

%H Project Euler, <a href="http://projecteuler.net/problem=200">Problem 200: Prime-proof Squbes</a> (2008).

%o (PARI) forstep( i=1,10^7,2, i%5 || next; isA118118(i) && print1(i","))

%o (Magma) IsA143641:=function(n); D:=Intseq(n); return Intseq(n)[1] ne 5 and forall{ <k, j>: k in [1..#D], j in [0..9] | not IsPrime(Seqint(Insert(D, k, k, [j]))) }; end function; [ n: n in [1..4000000 by 2] | IsA143641(n) ]; // _Klaus Brockhaus_, Mar 03 2011

%o (Python)

%o from sympy import isprime

%o from itertools import count, islice

%o def selfplusneighs(n):

%o s = str(n); d = "0123456789"; L = len(s)

%o yield from (int(s[:i]+c+s[i+1:]) for c in d for i in range(L))

%o def agen():

%o for n in count(1, 2):

%o if n%5 == 0: continue

%o if all(not isprime(k) for k in selfplusneighs(n)):

%o yield n

%o print(list(islice(agen(), 8))) # _Michael S. Branicky_, Aug 16 2022

%Y Cf. A118118.

%K base,nonn

%O 1,1

%A _M. F. Hasler_, Aug 27 2008, Sep 04 2008