login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143643
Numerators of the lower principal convergents and the lower intermediate convergents to 3^(1/2).
4
1, 3, 5, 12, 19, 45, 71, 168, 265, 627, 989, 2340, 3691, 8733, 13775, 32592, 51409, 121635, 191861, 453948, 716035, 1694157, 2672279, 6322680, 9973081, 23596563, 37220045, 88063572, 138907099, 328657725, 518408351, 1226567328, 1934726305, 4577611587, 7220496869, 17083879020, 26947261171, 63757904493, 100568547815
OFFSET
1,2
COMMENTS
The lower principal and intermediate convergents to 3^(1/2), beginning with 1/1, 3/2, 5/3, 12/7, 19/11, form a strictly increasing sequence; with essentially, numerators being this sequence and denominators being A005246.
sqrt(floor(a(n)^2/3)+1) = A005246(n+1). Also see A082630. - Richard R. Forberg, Nov 14 2013
a(n) = U_n(sqrt(6),1) for n odd and a(n) = 3*U_n(sqrt(6),1) for n even, where U_n(sqrt(R),Q) denotes the Lehmer sequence with parameters R and Q. This sequence is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for all positive integers n and m. Consequently, this sequence is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, Sep 03 2019
REFERENCES
Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
Clark Kimberling, "Best lower and upper approximates to irrational numbers," Elemente der Mathematik, 52 (1997) 122-126.
FORMULA
a(n) = 4*a(n-2)-a(n-4). G.f.: x*(1+3*x+x^2)/(1-4*x^2+x^4). - Colin Barker, Apr 28 2012
EXAMPLE
From Peter Bala, Sep 03 2019: (Start)
If p(n)/q(n) denotes the n-th convergent to the simple continued fraction alpha = [c(0); c(1), c(2), ...] then a lower semiconvergent is a rational number of the form ( p(2*n) + m*p(2*n+1) )/( q(2*n) + m*q(2*n+1) ) where 0 <= m <= c(2*n+2). The lower semiconvergents include the even-indexed convergents p(2*n)/q(2*n) and give an increasing sequence of approximations to alpha from below.
In this case the simple continued fraction expansion sqrt(3) = [1; 1, 2, 1, 2, ...] produces the sequence of convergents (p(n)/q(n))n>=0 = [1/1, 2/1, 5/3, 7/4, 19/11, 26,15, 71/41, ...].
Thus the increasing sequence of lower semiconvergents begins 1/1, (1 + 2)/(1 + 1) = 3/2, (1 + 2*2)/(1 + 2*1) = 5/3, (5 + 7)/(3 + 4) = 12/7, (5 + 2*7)/(3 + 2*4) = 19/11, ... with numerators 1, 3, 5, 12, 19, .... (End)
KEYWORD
nonn,frac,easy
AUTHOR
Clark Kimberling, Aug 27 2008
STATUS
approved