login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159287
Expansion of x^2/(1-x^2-2*x^3).
7
0, 0, 1, 0, 1, 2, 1, 4, 5, 6, 13, 16, 25, 42, 57, 92, 141, 206, 325, 488, 737, 1138, 1713, 2612, 3989, 6038, 9213, 14016, 21289, 32442, 49321, 75020, 114205, 173662, 264245, 402072, 611569, 930562, 1415713, 2153700, 3276837, 4985126, 7584237, 11538800
OFFSET
0,6
COMMENTS
A floretion-generated sequence: 'i + 0.5('ij' + 'ik' + 'ji' + 'jk' + 'ki' + 'kj').
From Greg Dresden, Nov 15 2024: (Start)
a(n) is the number of ways to tile a 2 X (n+1) board with L-shaped trominos and S-shaped quadrominos, where the first tile must be an upright L. For example, here are the a(7)=4 ways to tile a 2 X 8 board:
._______________. ._______________.
| |_ | _| _| | | |_ |_ | _| |
|___|_|_|___|___| |___|___|_|_|___|
._______________. ._______________.
| |_ | |_ |_ | | |_ |_ | |_ |
|___|_|___|___|_| |___|___|_|___|_| (End)
LINKS
Creighton Dement, Online Floretion Multiplier.
Yüksel Soykan, A Study on Generalized Jacobsthal-Padovan Numbers, Earthline Journal of Mathematical Sciences (2020) Vol. 4, No. 2, 227-251.
FORMULA
G.f.: x^2/(1-x^2-2*x^3).
a(n) = A052947(n-2). - R. J. Mathar, Nov 10 2009
a(n) = a(n-2) + 2*a(n-3). - Wesley Ivan Hurt, May 23 2023
From Greg Dresden, Nov 17 2024: (Start)
a(2*n+1) = 2*a(n)^2 + 2*a(n+1)*a(n+2).
a(3*n+1) = Sum_{i=1..n} a(3*i-2)*2^(n-i). (End)
MATHEMATICA
LinearRecurrence[{0, 1, 2}, {0, 0, 1}, 60] (* Vladimir Joseph Stephan Orlovsky, May 24 2011 *)
CoefficientList[Series[x^2/(1-x^2-2x^3), {x, 0, 50}], x] (* Harvey P. Dale, May 29 2021 *)
PROG
(PARI) a(n)=([0, 1, 0; 0, 0, 1; 2, 1, 0]^n*[0; 0; 1])[1, 1] \\ Charles R Greathouse IV, Oct 03 2016
(Magma) I:=[0, 0, 1]; [n le 3 select I[n] else Self(n-2) + 2*Self(n-3): n in [1..30]]; // G. C. Greubel, Jun 27 2018
CROSSREFS
Essentially the same as A052947.
Sequence in context: A351253 A110332 A052947 * A252448 A021992 A337123
KEYWORD
easy,nonn
AUTHOR
Creighton Dement, Apr 08 2009
STATUS
approved