login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A159290 A generalized Jacobsthal sequence. 1
3, 5, 13, 25, 53, 105, 213, 425, 853, 1705, 3413, 6825, 13653, 27305, 54613, 109225, 218453, 436905, 873813, 1747625, 3495253, 6990505, 13981013, 27962025, 55924053, 111848105, 223696213, 447392425, 894784853, 1789569705, 3579139413 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Sequence generated by the floretion: X*Y with X = 0.5('i + 'j + 'k + 'ee') and Y = 0.5(i' + j' + k' + 'ij' + 'ik' + 'ji' + 'jk' + 'ki' + 'kj' + 'ee')

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Creighton Dement, Online Floretion Multiplier

Index entries for linear recurrences with constant coefficients, signature (2,1,-2).

FORMULA

a(n) = -1 + (2*(-1)^n + 5*2^(n+1))/3.

G.f.: (3-x)/(-x^2+1-2*x+2*x^3).

a(n) = 3*A000975(n+1) - A000975(n). - R. J. Mathar, Sep 11 2019

MATHEMATICA

LinearRecurrence[{2, 1, -2}, {3, 5, 13}, 50] (* or *) Table[-1 + (2*(-1)^n + 5*2^(n+1))/3, {n, 0, 30}] (* G. C. Greubel, Jun 27 2018 *)

PROG

(PARI) x='x+O('x^50); Vec((3-x)/(-x^2+1-2*x+2*x^3)) \\ G. C. Greubel, Jun 27 2018

(Magma) [-1 + (2*(-1)^n + 5*2^(n+1))/3: n in [0..50]]; // G. C. Greubel, Jun 27 2018

CROSSREFS

A083943, A068156

Sequence in context: A026709 A219699 A320330 * A110494 A098615 A026720

Adjacent sequences:  A159287 A159288 A159289 * A159291 A159292 A159293

KEYWORD

easy,nonn

AUTHOR

Creighton Dement, Apr 08 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 6 12:35 EDT 2022. Contains 357264 sequences. (Running on oeis4.)