The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A100638 Successive powers of the matrix A=[1,2;3,4] written by rows in groups of 4. 4
 1, 2, 3, 4, 7, 10, 15, 22, 37, 54, 81, 118, 199, 290, 435, 634, 1069, 1558, 2337, 3406, 5743, 8370, 12555, 18298, 30853, 44966, 67449, 98302, 165751, 241570, 362355, 528106, 890461, 1297782, 1946673, 2837134, 4783807, 6972050, 10458075 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Consider the matrix A = [1, 2; 3, 4]. Then the sequence gives a(1) = A_{1,1} = A_11, a(2) = A_12, a(3) = A_21, a(4) = A_22, a(5)=(A^2)_11, a(6)=(A^2)_12, a(7)=(A^2)_21, a(8)=(A^2)_22, a(9)=(A^3)_11, a(10)=(A^3)_12, ... LINKS Alois P. Heinz, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 5, 0, 0, 0, 2). FORMULA a(4n-3) = A124610(n), a(4n-2) = 2 A015535(n), a(4n-1) = 3 A015535(n), a(4n) = a(4n-3) + a(4n-1). - M. F. Hasler, Dec 01 2008 a(n) = 5*a(n-4)+2*a(n-8). a(4n+1)=A124610(n+1), n>=0. G.f.: x*(1+2x+3x^2+4x^3+2x^4+2x^7) / (1-5x^4-2x^8). - R. J. Mathar, Dec 04 2008 MAPLE a:= proc(n) local r, m; (<<1|2>, <3|4>>^iquo(n+3, 4, 'r'))[iquo(r+2, 2, 'm'), m+1] end: seq(a(n), n=1..50); # Alois P. Heinz, Dec 01 2008 MATHEMATICA LinearRecurrence[{0, 0, 0, 5, 0, 0, 0, 2}, {1, 2, 3, 4, 7, 10, 15, 22}, 50] (* Jean-François Alcover, May 18 2018, after R. J. Mathar *) PROG (PARI) A100638(n)=([1, 2; 3, 4]^((n-1)\4+1))[(n-1)%4\2+1, 2-n%2] /* M. F. Hasler, Dec 01 2008 */ CROSSREFS Sequence in context: A129490 A018132 A329758 * A319437 A270659 A159288 Adjacent sequences: A100635 A100636 A100637 * A100639 A100640 A100641 KEYWORD easy,nonn AUTHOR Simone Severini, Dec 04 2004 EXTENSIONS Edited by Benoit Jubin, M. F. Hasler and N. J. A. Sloane, Dec 01 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 13:25 EDT 2024. Contains 372826 sequences. (Running on oeis4.)