The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A100638 Successive powers of the matrix A=[1,2;3,4] written by rows in groups of 4. 4
1, 2, 3, 4, 7, 10, 15, 22, 37, 54, 81, 118, 199, 290, 435, 634, 1069, 1558, 2337, 3406, 5743, 8370, 12555, 18298, 30853, 44966, 67449, 98302, 165751, 241570, 362355, 528106, 890461, 1297782, 1946673, 2837134, 4783807, 6972050, 10458075 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Consider the matrix A = [1, 2; 3, 4]. Then the sequence gives a(1) = A_{1,1} = A_11, a(2) = A_12, a(3) = A_21, a(4) = A_22, a(5)=(A^2)_11, a(6)=(A^2)_12, a(7)=(A^2)_21, a(8)=(A^2)_22, a(9)=(A^3)_11, a(10)=(A^3)_12, ...
LINKS
FORMULA
a(4n-3) = A124610(n), a(4n-2) = 2 A015535(n), a(4n-1) = 3 A015535(n), a(4n) = a(4n-3) + a(4n-1). - M. F. Hasler, Dec 01 2008
a(n) = 5*a(n-4)+2*a(n-8). a(4n+1)=A124610(n+1), n>=0. G.f.: x*(1+2x+3x^2+4x^3+2x^4+2x^7) / (1-5x^4-2x^8). - R. J. Mathar, Dec 04 2008
MAPLE
a:= proc(n) local r, m; (<<1|2>, <3|4>>^iquo(n+3, 4, 'r'))[iquo(r+2, 2, 'm'), m+1] end: seq(a(n), n=1..50); # Alois P. Heinz, Dec 01 2008
MATHEMATICA
LinearRecurrence[{0, 0, 0, 5, 0, 0, 0, 2}, {1, 2, 3, 4, 7, 10, 15, 22}, 50] (* Jean-François Alcover, May 18 2018, after R. J. Mathar *)
PROG
(PARI) A100638(n)=([1, 2; 3, 4]^((n-1)\4+1))[(n-1)%4\2+1, 2-n%2] /* M. F. Hasler, Dec 01 2008 */
CROSSREFS
Sequence in context: A129490 A018132 A329758 * A319437 A270659 A159288
KEYWORD
easy,nonn
AUTHOR
Simone Severini, Dec 04 2004
EXTENSIONS
Edited by Benoit Jubin, M. F. Hasler and N. J. A. Sloane, Dec 01 2008
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 13:25 EDT 2024. Contains 372826 sequences. (Running on oeis4.)