login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Successive powers of the matrix A=[1,2;3,4] written by rows in groups of 4.
4

%I #21 Mar 03 2024 14:10:31

%S 1,2,3,4,7,10,15,22,37,54,81,118,199,290,435,634,1069,1558,2337,3406,

%T 5743,8370,12555,18298,30853,44966,67449,98302,165751,241570,362355,

%U 528106,890461,1297782,1946673,2837134,4783807,6972050,10458075

%N Successive powers of the matrix A=[1,2;3,4] written by rows in groups of 4.

%C Consider the matrix A = [1, 2; 3, 4]. Then the sequence gives a(1) = A_{1,1} = A_11, a(2) = A_12, a(3) = A_21, a(4) = A_22, a(5)=(A^2)_11, a(6)=(A^2)_12, a(7)=(A^2)_21, a(8)=(A^2)_22, a(9)=(A^3)_11, a(10)=(A^3)_12, ...

%H Alois P. Heinz, <a href="/A100638/b100638.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 5, 0, 0, 0, 2).

%F a(4n-3) = A124610(n), a(4n-2) = 2 A015535(n), a(4n-1) = 3 A015535(n), a(4n) = a(4n-3) + a(4n-1). - _M. F. Hasler_, Dec 01 2008

%F a(n) = 5*a(n-4)+2*a(n-8). a(4n+1)=A124610(n+1), n>=0. G.f.: x*(1+2x+3x^2+4x^3+2x^4+2x^7) / (1-5x^4-2x^8). - _R. J. Mathar_, Dec 04 2008

%p a:= proc(n) local r, m; (<<1|2>, <3|4>>^iquo(n+3, 4, 'r'))[iquo(r+2, 2, 'm'), m+1] end: seq(a(n), n=1..50); # _Alois P. Heinz_, Dec 01 2008

%t LinearRecurrence[{0, 0, 0, 5, 0, 0, 0, 2}, {1, 2, 3, 4, 7, 10, 15, 22}, 50] (* _Jean-François Alcover_, May 18 2018, after _R. J. Mathar_ *)

%o (PARI) A100638(n)=([1,2;3,4]^((n-1)\4+1))[(n-1)%4\2+1,2-n%2] /* _M. F. Hasler_, Dec 01 2008 */

%K easy,nonn

%O 1,2

%A _Simone Severini_, Dec 04 2004

%E Edited by _Benoit Jubin_, _M. F. Hasler_ and _N. J. A. Sloane_, Dec 01 2008