login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A329758
Number of n-th generation nodes of a rooted binary tree whose m-th node has exactly A000002(m) descendants, where A000002 is the Kolakoski sequence.
2
1, 1, 2, 3, 4, 7, 10, 15, 22, 34, 51, 76, 114, 171, 257, 385, 575, 862, 1295, 1941, 2916, 4374, 6558, 9840, 14766, 22151, 33236, 49864, 74775, 112144, 168198, 252313, 378489, 567747, 851649, 1277446, 1916182, 2874172, 4311325, 6466984, 9700248, 14550387, 21825590
OFFSET
1,3
LINKS
FORMULA
a(n) = A054353(a(1) + ... + a(n-1)) - A054353(a(1) + ... + a(n-2)) for n > 2.
a(n) = A054352(n-1) - A054352(n-2). - A.H.M. Smeets, Apr 08 2024
PROG
(Python)
def A329758():
x = 1
g = A000002()
while True:
yield x
acc = 0
for i in range(0, x):
acc = acc + next(g)
x = acc # Jack W Grahl, May 04 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Jakub Zaborowski, Nov 20 2019
EXTENSIONS
More terms from Jack W Grahl, May 04 2020
STATUS
approved