Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Mar 23 2023 06:16:09
%S 1,1,2,3,4,7,10,15,24,35,54,83,124,191,290,439,672,1019,1550,2363,
%T 3588,5463,8314,12639,19240,29267,44518,67747,103052,156783,238546,
%U 362887,552112,839979,1277886,1944203,2957844,4499975,6846250,10415663
%N Expansion of (1 + x + x^2)/(1 - x^2 - 2*x^3).
%C A floretion-generated sequence: 'i + 0.5('ij' + 'ik' + 'ji' + 'jk' + 'ki' + 'kj')
%C Starting with offset 1 the sequence appears to be the INVERT transform of (1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, ...). - _Gary W. Adamson_, Aug 27 2016
%H G. C. Greubel, <a href="/A159288/b159288.txt">Table of n, a(n) for n = 0..1000</a>
%H Creighton Dement, <a href="http://fumba.eu/sitelayout/Floretion.php">Online Floretion Multiplier</a> [broken link]
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,2).
%F a(n) = A159287(n) + A159287(n+1) + A159287(n+2). - _R. J. Mathar_, Apr 10 2009
%F a(n) = a(n-2) + 2*a(n-3) for n>2. - _Colin Barker_, Apr 29 2019
%F a(n)= A052947(n) + A052947(n-1) +A052947(n-2). - _R. J. Mathar_, Mar 23 2023
%t CoefficientList[Series[(1+x+x^2)/(1-x^2-2x^3),{x,0,50}],x] (* _Harvey P. Dale_, Mar 09 2011 *)
%t LinearRecurrence[{0, 1, 2}, {1, 1, 2}, 50] (* _G. C. Greubel_, Jun 27 2018 *)
%o (PARI) a(n)=([0,1,0; 0,0,1; 2,1,0]^n*[1;1;2])[1,1] \\ _Charles R Greathouse IV_, Aug 27 2016
%o (PARI) Vec((1 + x + x^2) / (1 - x^2 - 2*x^3) + O(x^40)) \\ _Colin Barker_, Apr 29 2019
%o (Magma) I:=[1, 1, 2]; [n le 3 select I[n] else Self(n-2) + 2*Self(n-2): n in [1..30]]; // _G. C. Greubel_, Jun 27 2018
%Y Cf. A159284, A159285, A159286, A159287.
%K easy,nonn
%O 0,3
%A _Creighton Dement_, Apr 08 2009