login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A317078 Number of connected multiset partitions of strongly normal multisets of size n. 7
1, 1, 3, 6, 18, 46, 172, 563, 2347 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

A multiset is strongly normal if it spans an initial interval of positive integers with weakly decreasing multiplicities.

LINKS

Table of n, a(n) for n=0..8.

EXAMPLE

The a(3) = 6 connected multiset partitions are (111), (1)(11), (1)(1)(1), (112), (1)(12), (123).

MATHEMATICA

sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];

mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];

csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Union[Append[Delete[s, List/@c[[1]]], multijoin@@s[[c[[1]]]]]]]]];

strnorm[n_]:=Flatten[MapIndexed[Table[#2, {#1}]&, #]]&/@IntegerPartitions[n];

Length/@Table[Join@@Table[Select[mps[m], Length[csm[#]]==1&], {m, strnorm[n]}], {n, 8}]

CROSSREFS

Cf. A007716, A007718, A048143, A293994, A303837, A303838, A304716, A305078.

Cf. A317074, A317076, A317077, A317080.

Sequence in context: A032120 A115344 A223044 * A289587 A151262 A148555

Adjacent sequences:  A317075 A317076 A317077 * A317079 A317080 A317081

KEYWORD

nonn,more

AUTHOR

Gus Wiseman, Jul 20 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 22:29 EST 2019. Contains 329850 sequences. (Running on oeis4.)