This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A317077 Number of connected multiset partitions of normal multisets of size n. 8
 1, 1, 3, 8, 28, 110, 519, 2749, 16317 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS A multiset is normal if it spans an initial interval of positive integers. LINKS EXAMPLE The a(3) = 8 connected multiset partitions are (111), (1)(11), (1)(1)(1), (122), (2)(12), (112), (1)(12), (123). MATHEMATICA sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Union[Append[Delete[s, List/@c[[1]]], multijoin@@s[[c[[1]]]]]]]]]; allnorm[n_]:=Function[s, Array[Count[s, y_/; y<=#]+1&, n]]/@Subsets[Range[n-1]+1]; Length/@Table[Join@@Table[Select[mps[m], Length[csm[#]]==1&], {m, allnorm[n]}], {n, 8}] CROSSREFS Cf. A007716, A007718, A048143, A293994, A303837, A303838, A304716, A305078. Cf. A317073, A317075, A317078, A317079, A317080. Sequence in context: A093356 A224271 A135583 * A009437 A000776 A327030 Adjacent sequences:  A317074 A317075 A317076 * A317078 A317079 A317080 KEYWORD nonn,more AUTHOR Gus Wiseman, Jul 20 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 17:03 EST 2019. Contains 330000 sequences. (Running on oeis4.)