The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A303838 Number of z-forests with least common multiple n > 1. 17
 0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 8, 1, 1, 2, 2, 2, 5, 1, 2, 2, 4, 1, 8, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 16, 1, 2, 3, 1, 2, 8, 1, 3, 2, 8, 1, 7, 1, 2, 3, 3, 2, 8, 1, 5, 1, 2, 1, 16, 2, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,6 COMMENTS Given a finite set S of positive integers greater than 1, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices that have a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. A set S is said to be connected if G(S) is a connected graph. The clutter density of S is defined to be Sum_{s in S} (omega(s) - 1) - omega(LCM(S)), where omega = A001221 and LCM is least common multiple. A z-forest is a finite set of pairwise indivisible positive integers greater than 1 such that all connected components are z-trees, meaning they have clutter density -1. This is a generalization to multiset systems of the usual definition of hyperforest (viz. hypergraph F such that two distinct hyperedges of F intersect in at most a common vertex and such that every cycle of F is contained in a hyperedge). If n is squarefree with k prime factors, then a(n) = A134954(k). Differs from A324837 at positions {1, 180, 210, ...}. For example, a(210) = 55, A324837(210) = 49. LINKS Gus Wiseman, Table of n, a(n) for n = 1..250 R. Bacher, On the enumeration of labelled hypertrees and of labelled bipartite trees, arXiv:1102.2708 [math.CO]. EXAMPLE The a(60) = 16 z-forests together with the corresponding multiset systems (see A112798, A302242) are the following.        (60): {{1,1,2,3}}      (3,20): {{2},{1,1,3}}      (4,15): {{1,1},{2,3}}      (4,30): {{1,1},{1,2,3}}      (5,12): {{3},{1,1,2}}      (6,20): {{1,2},{1,1,3}}     (10,12): {{1,3},{1,1,2}}     (12,15): {{1,1,2},{2,3}}     (12,20): {{1,1,2},{1,1,3}}     (15,20): {{2,3},{1,1,3}}     (3,4,5): {{2},{1,1},{3}}    (3,4,10): {{2},{1,1},{1,3}}     (4,5,6): {{1,1},{3},{1,2}}    (4,6,10): {{1,1},{1,2},{1,3}}    (4,6,15): {{1,1},{1,2},{2,3}}   (4,10,15): {{1,1},{1,3},{2,3}} MATHEMATICA zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[Less@@#, GCD@@s[[#]]]>1&]}, If[c=={}, s, zsm[Union[Append[Delete[s, List/@c[[1]]], LCM@@s[[c[[1]]]]]]]]]; zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s]; Table[Length[Select[Rest[Subsets[Rest[Divisors[n]]]], Function[s, LCM@@s==n&&And@@Table[zensity[Select[s, Divisible[m, #]&]]==-1, {m, zsm[s]}]&&Select[Tuples[s, 2], UnsameQ@@#&&Divisible@@#&]=={}]]], {n, 100}] CROSSREFS Cf. A006126, A030019, A048143, A076078, A112798, A134954, A275307, A285572, A286518, A286520, A293993, A293994, A302242, A303837, A304118. Sequence in context: A321747 A008480 A168324 * A324837 A285572 A179926 Adjacent sequences:  A303835 A303836 A303837 * A303839 A303840 A303841 KEYWORD nonn AUTHOR Gus Wiseman, May 19 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 15 02:21 EDT 2021. Contains 343909 sequences. (Running on oeis4.)