login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179926
Number of permutations of the divisors of n of the form d_1=n, d_2, d_3, ..., d_tau(n) such that d_(i+1)/d_i is a prime or 1/prime for all i.
7
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 18, 1, 1, 2, 2, 2, 8, 1, 2, 2, 4, 1, 18, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 106, 1, 2, 3, 1, 2, 18, 1, 3, 2, 18, 1, 17, 1, 2, 3, 3, 2, 18, 1, 5, 1, 2, 1, 106, 2, 2, 2, 4, 1, 106, 2, 3, 2, 2, 2, 6, 1, 3, 3, 8, 1, 18, 1, 4, 18, 2, 1, 17, 1, 18, 2, 5, 1, 18, 2, 3, 3, 2, 2, 572
OFFSET
1,6
COMMENTS
In view of formulas given below, there are many common first terms with A001221. Note that, for n >= 1, a(n) is positive; it is function of exponents of prime power factorization of n only; moreover, it is invariant with respect to permutations of them.
An equivalent multiset formulation of the problem: for a given finite multiset A, we should, beginning with A, to get all submultisets of A, if, by every step, we remove or join 1 element. How many ways are there to do this?
Via Seqfan Discussion List (Aug 03 2010), Alois P. Heinz proved that every subsequence of the form a(p), a(p*q), a(p*q*r), ..., where p, q, r, ... are distinct primes, coincides with A003043. - Vladimir Shevelev, Aug 09 2010
The parity (odd or even) of bigomega(d_i) in a permutation of divisors of n alternates. - David A. Corneth, Nov 25 2017
Equivalently, the number of Hamiltonian paths in a graph with vertices corresponding to the divisors of n and edges connecting divisors that differ by a prime with the path starting on the vertex associated with 1. - Andrew Howroyd, Oct 26 2019
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..1259 (first 719 terms from David A. Corneth)
V. Shevelev, Combinatorial minors of matrix functions and their applications, arXiv:1105.3154 [math.CO], 2011-2014.
V. Shevelev, Combinatorial minors of matrix functions and their applications, Zesz. Nauk. PS., Mat. Stosow., Zeszyt 4, pp. 5-16. (2014).
FORMULA
a(p^k)=1, a(p^k*q)=k+1, a(p^2*q^2)=8, a(p^2*q^3)=17, a(pqr)=18, a(p^2*q*r)=106, a(p^3*q*r)=572, etc. (here p,q,r are distinct primes, k >= 0).
EXAMPLE
a(12)=3:
[12, 6, 3, 1, 2, 4]
[12, 4, 2, 6, 3, 1]
[12, 4, 2, 1, 3, 6]
a(45)=3:
[45, 15, 5, 1, 3, 9]
[45, 9, 3, 15, 5, 1]
[45, 9, 3, 1, 5, 15]
MAPLE
q:= (i, j)-> is(i/j, integer) and isprime(i/j):
b:= proc(s, l) option remember; `if`(s={}, 1, add(
`if`(q(l, j) or q(j, l), b(s minus{j}, j), 0), j=s))
end:
a:= n-> (s-> b(s minus {n}, n))(numtheory[divisors](n)):
seq(a(n), n=1..100); # Alois P. Heinz, Nov 26 2017
MATHEMATICA
q[i_, j_] := PrimeQ[i/j];
b[s_, l_] := b[s, l] = If[s == {}, 1, Sum[If[q[l, j] || q[j, l], b[s ~Complement~ {j}, j], 0], {j, s}]];
a[n_] := Function[s, b[s ~Complement~ {n}, n]][Divisors[n]];
Array[a, 120] (* Jean-François Alcover, Dec 13 2017, after Alois P. Heinz *)
PROG
(PARI) a(n) = {my(f = factor(n), l = List(), chain = List()); res = 0; forvec(x = vector(#f~, i, [0, f[i, 2]]), listput(l, x)); listput(chain, l[#l]); listpop(l, #l); iterate(chain, l); res}
iterate(c, l) = {if(#l == 1, if(vecsum(abs(c[#c] - l[1])) == 1, res++), my(cc, cl);
for(i = 1, #l, if(vecsum(abs(c[#c] - l[i])) == 1, cc = c; cl = l; listput(cc, l[i]); listpop(cl, i); iterate(cc, cl))))}
first(n) = {my(res = vector(n), m = Map()); res[1] = 1; for(i = 2, n, cn = a046523(i); if(cn == i, mapput(m, i, a(i))); res[i] = mapget(m, cn)); res}
a046523(n)=my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]) \\ (a046523 from Charles R Greathouse IV), David A. Corneth, Nov 24 2017
CROSSREFS
See A173675 for another version.
Sequence in context: A303838 A324837 A285572 * A066882 A300831 A068347
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Aug 02 2010
EXTENSIONS
Corrected by D. S. McNeil and Alois P. Heinz and extended by Alois P. Heinz from a(46) via the Seqfan Discussion List (Aug 02 2010)
STATUS
approved