login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179927
Triangle of centered orthotopic numbers
4
1, 1, 2, 1, 3, 2, 1, 5, 5, 2, 1, 9, 13, 7, 2, 1, 17, 35, 25, 9, 2, 1, 33, 97, 91, 41, 11, 2, 1, 65, 275, 337, 189, 61, 13, 2, 1, 129, 793, 1267, 881, 341, 85, 15, 2
OFFSET
0,3
COMMENTS
T(n, k) = [x^k] series[ H(n - k, x) ]
Here H(n,x) = E(n,x)*(1+x)/(1-x)^(n+1) where E(n,x) are the Eulerian polynomials, E(0,x) = 1 and E(n,x) = sum_{k=0^{n-1}} W_{n,k} x^k for n > 0. W_{n,k} as in DLMF Table 26.14.1.
EXAMPLE
1
1, 2
1, 3, 2
1, 5, 5, 2
1, 9, 13, 7, 2
1, 17, 35, 25, 9, 2
1, 33, 97, 91, 41, 11, 2
MAPLE
E := (n, x) -> `if`(n=0, 1, x*(1-x)*diff(E(n-1, x), x)+E(n-1, x)*(1+(n-1)*x));
H := (n, x) -> E(n, x)*(1+x)/(1-x)^(n+1);
A179927 := (n, k) -> coeff(series(H(n-k, x), x, 18), x, k);
seq(print(seq(A179927(n, k), k=0..n)), n=0..6);
MATHEMATICA
e[0, _] = 1; e[n_, x_] := e[n, x] = x(1-x) D[e[n-1, x], x] + e[n-1, x] (1 + (n-1)x);
h[n_, x_] := e[n, x] (1+x)/(1-x)^(n+1);
T[n_, k_] := SeriesCoefficient[h[n-k, x], {x, 0, k}];
Table[T[n, k], {n, 0, 8}, {k, 0, n}] (* Jean-François Alcover, Jun 17 2019, from Maple *)
CROSSREFS
Cf. Row sums in A179928, triangle of orthotopic numbers is A009998.
Sequence in context: A038497 A091355 A131245 * A104446 A131345 A134423
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Aug 02 2010
STATUS
approved