login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A317073
Number of antichains of multisets with multiset-join a normal multiset of size n.
9
1, 1, 3, 16, 198, 9890, 8592538
OFFSET
0,3
COMMENTS
An antichain of multisets is a finite set of finite nonempty multisets, none of which is a submultiset of any other. A multiset is normal if it spans an initial interval of positive integers. The multiset-join of a set of multisets has the same vertices with multiplicities equal to the maxima of the multiplicities in the edges.
LINKS
Goran Kilibarda and Vladeta Jovovic, Antichains of Multisets, Journal of Integer Sequences, Vol. 7 (2004).
EXAMPLE
The a(3) = 16 antichains of multisets:
(111),
(122), (12)(22), (1)(22),
(112), (11)(12), (2)(11),
(123), (13)(23), (12)(23), (12)(13), (12)(13)(23), (3)(12), (2)(13), (1)(23), (1)(2)(3).
MATHEMATICA
stableSets[u_, Q_]:=If[Length[u]==0, {{}}, With[{w=First[u]}, Join[stableSets[DeleteCases[u, w], Q], Prepend[#, w]&/@stableSets[DeleteCases[u, r_/; r==w||Q[r, w]||Q[w, r]], Q]]]];
multijoin[mss__]:=Join@@Table[Table[x, {Max[Count[#, x]&/@{mss}]}], {x, Union[mss]}]
submultisetQ[M_, N_]:=Or[Length[M]==0, MatchQ[{Sort[List@@M], Sort[List@@N]}, {{x_, Z___}, {___, x_, W___}}/; submultisetQ[{Z}, {W}]]];
allnorm[n_]:=Function[s, Array[Count[s, y_/; y<=#]+1&, n]]/@Subsets[Range[n-1]+1];
auu[m_]:=Select[stableSets[Union[Rest[Subsets[m]]], submultisetQ], multijoin@@#==m&];
Table[Length[Join@@Table[auu[m], {m, allnorm[n]}]], {n, 5}]
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Jul 20 2018
EXTENSIONS
a(6) from Robert Price, Jun 21 2021
STATUS
approved