login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166860
Number of saturated chains in the poset of Dyck paths ordered by inclusion.
1
1, 1, 3, 16, 191, 9586, 3621062, 13539455808, 596242050871827, 358279069210950329112, 3339667708892016201497713938, 540966002417189385158099747634890008, 1685909333511453301447626182908204645875878754, 110859993072493750180447848516163015805399916591746521402
OFFSET
0,3
COMMENTS
Breakdown by length of chain:
n: chains
0: 1;
1: 1;
2: 2, 1;
3: 5, 5, 4, 2;
4: 14, 21, 30, 38, 40, 32, 16;
5: 42, 84, 168, 322, 578, 952, 1408, 1808, 1920, 1536, 768;
Note that for each n, there are C_n chains of length 0 (A000108) and the number of maximal chains is A005118.
REFERENCES
R. P. Stanley, Enumerative Combinatorics 1, Cambridge University Press, New York, 1997.
FORMULA
1) For D_i, D_j in D_n, the number of saturated chains = Sum_{D_i<=D_j} (number of standard Young tableaux for D_j\D_i partition).
2) Define zeta(x,y)=1 if x=y or if y immediately covers x in the poset and delta is the identity function. Then the number of saturated chains = sum of entries in the (2*delta - zeta)^(-1) matrix.
EXAMPLE
For n=3, the Hasse diagram consists of 5 vertices corresponding to the 5 Dyck paths. With area as the rank function, we have one vertex of rank 0, two of rank 1, one of rank 2 and one of rank 3.
There are 16 saturated chains with 5 chains on one vertex, 5 chains on two vertices, 4 chains on three vertices and the 2 maximal chains on four vertices.
MAPLE
# E.g., for n=3, using John Stembridge's Symmetric Functions package:
withSF();
AA:=add(s[op(la)], la=subPar([2, 1])); tos(skew(AA, AA));
scalar(%, add(h1^r, r=0..4));
# second Maple program:
d:= proc(x, y, l) option remember;
`if`(x<=1, [[y, l[]]], [seq(d(x-1, i, [y, l[]])[], i=x-1..y)])
end:
a:= proc(n) option remember; local g;
g:= proc(l) option remember;
1 +add(`if`(l[i]>i and (i=1 or l[i-1]<l[i]),
g(subsop(i=l[i]-1, l)), 0), i=1..n-1)
end;
add(g(j), j=d(n, n, []))
end:
seq(a(n), n=0..10); # Alois P. Heinz, Jul 27 2011
MATHEMATICA
d[x_, y_, l_List] := d[x, y, l] = If[x <= 1, {Join[{y}, l]}, Flatten[Table[d[x-1, i, Join[{y}, l]], {i, x-1, y}], 1]]; a[n_] := a[n] = Module[{g}, g[l_List] := g[l] = 1 + Sum[If[l[[i]] > i && (i == 1 || l[[i-1]] < l[[i]]), g[ReplacePart[l, i -> l[[i]] - 1]], 0], {i, 1, n-1}]; Sum[g[j], {j, d[n, n, {}]}]]; Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Jul 06 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Jennifer Woodcock (jennifer.woodcock(AT)ugdsb.on.ca), Oct 21 2009
EXTENSIONS
a(9)-a(13) from Alois P. Heinz, Jul 27 2011
STATUS
approved