OFFSET
0,3
COMMENTS
REFERENCES
R. P. Stanley, Enumerative Combinatorics 1, Cambridge University Press, New York, 1997.
LINKS
FORMULA
1) For D_i, D_j in D_n, the number of saturated chains = Sum_{D_i<=D_j} (number of standard Young tableaux for D_j\D_i partition).
2) Define zeta(x,y)=1 if x=y or if y immediately covers x in the poset and delta is the identity function. Then the number of saturated chains = sum of entries in the (2*delta - zeta)^(-1) matrix.
EXAMPLE
For n=3, the Hasse diagram consists of 5 vertices corresponding to the 5 Dyck paths. With area as the rank function, we have one vertex of rank 0, two of rank 1, one of rank 2 and one of rank 3.
There are 16 saturated chains with 5 chains on one vertex, 5 chains on two vertices, 4 chains on three vertices and the 2 maximal chains on four vertices.
MAPLE
# E.g., for n=3, using John Stembridge's Symmetric Functions package:
withSF();
AA:=add(s[op(la)], la=subPar([2, 1])); tos(skew(AA, AA));
scalar(%, add(h1^r, r=0..4));
# second Maple program:
d:= proc(x, y, l) option remember;
`if`(x<=1, [[y, l[]]], [seq(d(x-1, i, [y, l[]])[], i=x-1..y)])
end:
a:= proc(n) option remember; local g;
g:= proc(l) option remember;
1 +add(`if`(l[i]>i and (i=1 or l[i-1]<l[i]),
g(subsop(i=l[i]-1, l)), 0), i=1..n-1)
end;
add(g(j), j=d(n, n, []))
end:
seq(a(n), n=0..10); # Alois P. Heinz, Jul 27 2011
MATHEMATICA
d[x_, y_, l_List] := d[x, y, l] = If[x <= 1, {Join[{y}, l]}, Flatten[Table[d[x-1, i, Join[{y}, l]], {i, x-1, y}], 1]]; a[n_] := a[n] = Module[{g}, g[l_List] := g[l] = 1 + Sum[If[l[[i]] > i && (i == 1 || l[[i-1]] < l[[i]]), g[ReplacePart[l, i -> l[[i]] - 1]], 0], {i, 1, n-1}]; Sum[g[j], {j, d[n, n, {}]}]]; Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Jul 06 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Jennifer Woodcock (jennifer.woodcock(AT)ugdsb.on.ca), Oct 21 2009
EXTENSIONS
a(9)-a(13) from Alois P. Heinz, Jul 27 2011
STATUS
approved