Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Dec 12 2021 22:31:18
%S 1,1,3,16,191,9586,3621062,13539455808,596242050871827,
%T 358279069210950329112,3339667708892016201497713938,
%U 540966002417189385158099747634890008,1685909333511453301447626182908204645875878754,110859993072493750180447848516163015805399916591746521402
%N Number of saturated chains in the poset of Dyck paths ordered by inclusion.
%C Breakdown by length of chain:
%C n: chains
%C 0: 1;
%C 1: 1;
%C 2: 2, 1;
%C 3: 5, 5, 4, 2;
%C 4: 14, 21, 30, 38, 40, 32, 16;
%C 5: 42, 84, 168, 322, 578, 952, 1408, 1808, 1920, 1536, 768;
%C Note that for each n, there are C_n chains of length 0 (A000108) and the number of maximal chains is A005118.
%D R. P. Stanley, Enumerative Combinatorics 1, Cambridge University Press, New York, 1997.
%H J. Woodcock, <a href="http://garsia.math.yorku.ca/~zabrocki/papers/DPfinal.pdf">Properties of the poset of Dyck paths ordered by inclusion</a>
%F 1) For D_i, D_j in D_n, the number of saturated chains = Sum_{D_i<=D_j} (number of standard Young tableaux for D_j\D_i partition).
%F 2) Define zeta(x,y)=1 if x=y or if y immediately covers x in the poset and delta is the identity function. Then the number of saturated chains = sum of entries in the (2*delta - zeta)^(-1) matrix.
%e For n=3, the Hasse diagram consists of 5 vertices corresponding to the 5 Dyck paths. With area as the rank function, we have one vertex of rank 0, two of rank 1, one of rank 2 and one of rank 3.
%e There are 16 saturated chains with 5 chains on one vertex, 5 chains on two vertices, 4 chains on three vertices and the 2 maximal chains on four vertices.
%p # E.g., for n=3, using John Stembridge's Symmetric Functions package:
%p withSF();
%p AA:=add(s[op(la)],la=subPar([2,1]));tos(skew(AA,AA));
%p scalar(%, add(h1^r,r=0..4));
%p # second Maple program:
%p d:= proc(x, y, l) option remember;
%p `if`(x<=1, [[y, l[]]], [seq(d(x-1, i, [y, l[]])[], i=x-1..y)])
%p end:
%p a:= proc(n) option remember; local g;
%p g:= proc(l) option remember;
%p 1 +add(`if`(l[i]>i and (i=1 or l[i-1]<l[i]),
%p g(subsop(i=l[i]-1, l)), 0), i=1..n-1)
%p end;
%p add(g(j), j=d(n, n, []))
%p end:
%p seq(a(n), n=0..10); # _Alois P. Heinz_, Jul 27 2011
%t d[x_, y_, l_List] := d[x, y, l] = If[x <= 1, {Join[{y}, l]}, Flatten[Table[d[x-1, i, Join[{y}, l]], {i, x-1, y}], 1]]; a[n_] := a[n] = Module[{g}, g[l_List] := g[l] = 1 + Sum[If[l[[i]] > i && (i == 1 || l[[i-1]] < l[[i]]), g[ReplacePart[l, i -> l[[i]] - 1]], 0], {i, 1, n-1}]; Sum[g[j], {j, d[n, n, {}]}]]; Table[a[n], {n, 0, 10}] (* _Jean-François Alcover_, Jul 06 2015, after _Alois P. Heinz_ *)
%Y Cf. A143672, A000108, A005118.
%K nonn
%O 0,3
%A Jennifer Woodcock (jennifer.woodcock(AT)ugdsb.on.ca), Oct 21 2009
%E a(9)-a(13) from _Alois P. Heinz_, Jul 27 2011