login
A113597
a(n) = F(F(n+1)) - F(F(n)), where F() = Fibonacci numbers.
1
1, 0, 0, 1, 3, 16, 212, 10713, 5691941, 139578159558, 1779979276420851744, 555565404222512714988011077619, 2211236406303914545143847565520581298983941196845, 2746979206949941983182302875626552882765513393050066744028390937621757948751904
OFFSET
0,5
LINKS
MAPLE
F:= n-> (<<0|1>, <1|1>>^n)[1, 2]:
a:= n-> F(F(n+1)) - F(F(n)):
seq(a(n), n=0..13); # Alois P. Heinz, Nov 07 2018
PROG
(PARI) F=fibonacci; a(n) = F(F(n+1)) - F(F(n)); \\ Michel Marcus, Sep 16 2013
CROSSREFS
Cf. A000045. First differences of A007570.
Sequence in context: A317073 A272658 A326903 * A361366 A000273 A071897
KEYWORD
easy,nonn
AUTHOR
Amarnath Murthy, Nov 07 2005
EXTENSIONS
Better description from Jonathan Vos Post, Nov 10 2005
Edited by N. J. A. Sloane, Nov 11, 2005
a(0)=1 prepended by Alois P. Heinz, Nov 07 2018
STATUS
approved