login
A056312
Number of reversible strings with n beads using exactly five different colors.
5
0, 0, 0, 0, 60, 900, 8400, 63000, 417120, 2551560, 14804700, 82764900, 450518460, 2404510500, 12646078200, 65771496000, 339165516120, 1737486149760, 8855359634100, 44952367981500, 227475768907860, 1148269329527100, 5785013373810000, 29100047092479000
OFFSET
1,5
COMMENTS
A string and its reverse are considered to be equivalent.
REFERENCES
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
LINKS
Index entries for linear recurrences with constant coefficients, signature (13,-45,-75,695,-575,-3195,5595,4706,-14918,2160,12840,-7200).
FORMULA
a(n) = A032122(n) - 5*A032121(n) + 10*A032120(n) - 10*A005418(n+1) + 5.
G.f.: -60*x^5*(120*x^7 - 17*x^6 - 50*x^5 - 32*x^4 + 20*x^3 + 10*x^2 - 2*x - 1)/((x - 1)*(2*x - 1)*(2*x + 1)*(3*x - 1)*(4*x - 1)*(5*x - 1)*(2*x^2 - 1)*(3*x^2 - 1)*(5*x^2 - 1)). [Colin Barker, Sep 03 2012]
a(n) = k! (S2(n,k) + S2(ceiling(n/2),k)) / 2, where k=5 is the number of colors and S2 is the Stirling subset number. - Robert A. Russell, Sep 25 2018
EXAMPLE
For n=5, the 60 rows are 60 permutations of ABCDE that do not include any mutual reversals. Each of the 60 chiral pairs, such as ABCDE-EDCBA, is then counted just once.
MATHEMATICA
k=5; Table[(StirlingS2[i, k]+StirlingS2[Ceiling[i/2], k])k!/2, {i, 30}] (* Robert A. Russell, Nov 25 2017 *) adapted
CoefficientList[Series[-60*x^4*(120*x^7 - 17*x^6 - 50*x^5 - 32*x^4 + 20*x^3 + 10*x^2 - 2*x - 1)/((x - 1)*(2*x - 1)*(2*x + 1)*(3*x - 1)*(4*x - 1)*(5*x - 1)*(2*x^2 - 1)*(3*x^2 - 1)*(5*x^2 - 1)), {x, 0, 30}], x] (* Stefano Spezia, Sep 29 2018 *)
PROG
(PARI) a(n) = 60*(stirling(n, 5, 2) + stirling(ceil(n/2), 5, 2)); \\ Altug Alkan, Sep 27 2018
(Magma) [60*(StirlingSecond(n, 5)+StirlingSecond(Ceiling(n/2), 5)): n in [1..30]]; // Vincenzo Librandi, Sep 30 2018
CROSSREFS
Column 5 of A305621.
Equals (A001118 + A056456) / 2 = A001118 - A305625 = A305625 + A056456.
Sequence in context: A229368 A305625 A056321 * A268967 A189607 A223213
KEYWORD
nonn,easy
STATUS
approved