login
A114635
Numbers k such that the k-th octagonal number is 7-almost prime.
2
24, 30, 32, 38, 48, 66, 72, 78, 90, 94, 104, 110, 112, 114, 120, 136, 140, 154, 164, 166, 168, 176, 180, 190, 204, 206, 208, 210, 220, 222, 228, 238, 248, 254, 276, 280, 284, 286, 290, 300, 306, 312, 326, 338, 344
OFFSET
1,1
COMMENTS
It is necessary but not sufficient that k must be prime (A000040), semiprime (A001358), 3-almost prime (A014612), 4-almost prime (A014613), 5-almost prime (A014614), or 6-almost prime (A046308).
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harvey P. Dale)
Eric Weisstein's World of Mathematics, Almost Prime.
Eric Weisstein's World of Mathematics, Octagonal Number.
FORMULA
Numbers k such that k*(3*k-2) has exactly seven prime factors (with multiplicity).
Numbers k such that A000567(k) is a term of A046308.
Numbers k such that A001222(A000567(k)) = 7.
Numbers k such that A001222(k) + A001222(3*k-2) = 7.
Numbers k such that [(3*k-2)*(3*k-1)*(3*k)]/[(3*k-2)+(3*k-1)+(3*k)] is a term of A046308.
EXAMPLE
a(1) = 24 because OctagonalNumber(24) = Oct(24) = 24*(3*24-2) = 96 = 1680 = 2^4 * 3 * 5 * 7 has exactly 7 prime factors (four are all equally 2; factors need not be distinct).
a(2) = 30 because Oct(30) = 30*(3*30-2) = 2640 = 2^4 * 3 * 5 * 11 is 7-almost prime.
a(3) = 32 because Oct(32) = 32*(3*32-2) = 3008 = 2^6 * 47 is 7-almost prime.
MATHEMATICA
Select[Range[400], PrimeOmega[PolygonalNumber[8, #]]==7&] (* Harvey P. Dale, Aug 13 2021 *)
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Feb 18 2006
STATUS
approved