login
A333946
Perimeters of integer-sided triangles with prime inradius.
1
24, 30, 32, 36, 40, 42, 44, 56, 60, 64, 76, 80, 84, 96, 104, 108, 120, 132, 140, 144, 156, 168, 192, 204, 216, 220, 228, 240, 252, 276, 288, 312, 324, 336, 348, 360, 372, 396, 408, 420, 444, 480, 492, 516, 528, 552, 564, 576, 588, 624, 636, 660, 672, 684, 708, 732
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Incircle
Wikipedia, Integer Triangle
MATHEMATICA
Flatten[Table[If[Sum[Sum[(PrimePi[Sqrt[(n/2) (n/2 - i) (n/2 - k) (n/2 - (n - i - k))]/(n/2)] - PrimePi[Sqrt[(n/2) (n/2 - i) (n/2 - k) (n/2 - (n - i - k))]/(n/2) - 1]) (1 - Ceiling[Sqrt[(n/2) (n/2 - i) (n/2 - k) (n/2 - (n - i - k))]/(n/2)] + Floor[Sqrt[(n/2) (n/2 - i) (n/2 - k) (n/2 - (n - i - k))]/(n/2)]) Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}] > 0, n, {}], {n, 100}]]
CROSSREFS
Cf. A005044, A333945 (integer inradius).
Sequence in context: A093455 A080564 A048260 * A354809 A337933 A114635
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Apr 11 2020
STATUS
approved