login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A321854 Irregular triangle where T(H(u),H(v)) is the number of ways to partition the Young diagram of u into vertical sections whose sizes are the parts of v, where H is Heinz number. 10
1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 2, 1, 0, 0, 0, 0, 1, 1, 3, 1, 0, 2, 0, 4, 1, 0, 0, 0, 3, 1, 0, 0, 0, 0, 0, 0, 1, 0, 2, 2, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 4, 1, 0, 0, 0, 6, 0, 6, 1, 1, 3, 4, 6, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,11

COMMENTS

Row n has length A000041(A056239(n)).

A vertical section is a partial Young diagram with at most one square in each row.

LINKS

Table of n, a(n) for n=1..87.

EXAMPLE

Triangle begins:

  1

  1

  0  1

  1  1

  0  0  1

  0  2  1

  0  0  0  0  1

  1  3  1

  0  2  0  4  1

  0  0  0  3  1

  0  0  0  0  0  0  1

  0  2  2  5  1

  0  0  0  0  0  0  0  0  0  0  1

  0  0  0  0  0  4  1

  0  0  0  6  0  6  1

  1  3  4  6  1

  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1

  0  0  4 10  4  8  1

The 12th row counts the following partitions of the Young diagram of (211) into vertical sections (shown as colorings by positive integers):

  T(12,7) = 0:

.

  T(12,9) = 2:    1 2   1 2

                  1     2

                  2     1

.

  T(12,10) = 2:   1 2   1 2

                  2     1

                  2     1

.

  T(12,12) = 5:   1 2   1 2   1 2   1 2   1 2

                  3     2     3     1     3

                  3     3     2     3     1

.

  T(12,16) = 1:   1 2

                  3

                  4

MATHEMATICA

primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];

spsu[_, {}]:={{}}; spsu[foo_, set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@spsu[Select[foo, Complement[#, Complement[set, s]]=={}&], Complement[set, s]]]/@Cases[foo, {i, ___}];

ptnpos[y_]:=Position[Table[1, {#}]&/@y, 1];

ptnverts[y_]:=Select[Rest[Subsets[ptnpos[y]]], UnsameQ@@First/@#&];

Table[With[{y=Reverse[primeMS[n]]}, Table[Length[Select[spsu[ptnverts[y], ptnpos[y]], Sort[Length/@#]==primeMS[k]&]], {k, Sort[Times@@Prime/@#&/@IntegerPartitions[Total[primeMS[n]]]]}]], {n, 18}]

CROSSREFS

Cf. A000085, A000110, A007016, A056239, A122111, A153452, A215366, A296188, A300121, A318396, A321719-A321731, A321737, A321738, A321742-A321765.

Sequence in context: A143542 A072612 A116378 * A227839 A291748 A124744

Adjacent sequences:  A321851 A321852 A321853 * A321855 A321856 A321857

KEYWORD

nonn,tabf

AUTHOR

Gus Wiseman, Nov 19 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 13:33 EDT 2021. Contains 347607 sequences. (Running on oeis4.)