login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321737
Number of ways to partition the Young diagram of an integer partition of n into vertical sections.
7
1, 1, 3, 9, 37, 152, 780, 3965, 23460, 141471, 944217, 6445643, 48075092, 364921557, 2974423953, 24847873439, 219611194148, 1987556951714, 18930298888792, 184244039718755, 1874490999743203, 19510832177784098, 210941659716920257, 2331530519337226199, 26692555830628617358
OFFSET
0,3
COMMENTS
A vertical section is a partial Young diagram with at most one square in each row. For example, a partition (shown as a coloring by positive integers) into vertical sections of the Young diagram of (322) is:
1 2 3
1 2
2 3
EXAMPLE
The a(4) = 37 partitions into vertical sections of integer partitions of 4:
1 2 3 4
.
1 2 3 1 2 3 1 2 3 1 2 3
4 3 2 1
.
1 2 1 2 1 2 1 2 1 2 1 2 1 2
3 4 2 3 3 2 1 3 1 2 3 1 2 1
.
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
3 3 2 3 2 1 1 3 2 1
4 3 3 2 2 3 2 1 1 1
.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 1 1 2 2 2 2 1 1 2 1
3 3 2 3 2 2 2 1 1 3 2 1 2 1 1
4 3 3 2 2 3 2 3 2 1 1 2 1 1 1
MATHEMATICA
spsu[_, {}]:={{}}; spsu[foo_, set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@spsu[Select[foo, Complement[#, Complement[set, s]]=={}&], Complement[set, s]]]/@Cases[foo, {i, ___}];
ptnpos[y_]:=Position[Table[1, {#}]&/@y, 1];
ptnverts[y_]:=Select[Rest[Subsets[ptnpos[y]]], UnsameQ@@First/@#&];
Table[Sum[Length[spsu[ptnverts[y], ptnpos[y]]], {y, IntegerPartitions[n]}], {n, 6}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 19 2018
EXTENSIONS
a(11)-a(24) from Ludovic Schwob, Aug 28 2023
STATUS
approved