The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A321728 Number of integer partitions of n whose Young diagram cannot be partitioned into vertical sections of the same sizes as the parts of the original partition. 10
 0, 0, 1, 1, 2, 3, 5, 7, 10, 14, 20, 28, 37, 50 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS First differs from A000701 at a(11) = 28, A000701(11) = 27 A vertical section is a partial Young diagram with at most one square in each row. Conjecture: a(n) is the number of non-half-loop-graphical partitions of n. An integer partition is half-loop-graphical if it comprises the multiset of vertex-degrees of some graph with half-loops, where a half-loop is an edge with one vertex, to be distinguished from a full loop, which has two equal vertices. LINKS Eric Weisstein's World of Mathematics, Degree Sequence. FORMULA a(n) is the number of integer partitions y of n such that the coefficient of m(y) in e(y) is zero, where m is monomial and e is elementary symmetric functions. a(n) = A000041(n) - A321729(n). EXAMPLE The a(2) = 1 through a(9) = 14 partitions whose Young diagram cannot be partitioned into vertical sections of the same sizes as the parts of the original partition are the same as the non-half-loop-graphical partitions up to n = 9:   (2)  (3)  (4)   (5)   (6)    (7)    (8)     (9)             (31)  (32)  (33)   (43)   (44)    (54)                   (41)  (42)   (52)   (53)    (63)                         (51)   (61)   (62)    (72)                         (411)  (331)  (71)    (81)                                (421)  (422)   (432)                                (511)  (431)   (441)                                       (521)   (522)                                       (611)   (531)                                       (5111)  (621)                                               (711)                                               (4311)                                               (5211)                                               (6111) For example, a complete list of all half/full-loop-graphs with degrees y = (4,3,1) is the following:   {{1,1},{1,2},{1,3},{2,2}}   {{1},{2},{1,1},{1,2},{2,3}}   {{1},{2},{1,1},{1,3},{2,2}}   {{1},{3},{1,1},{1,2},{2,2}} None of these is a half-loop-graph, as they have full loops (x,x), so y is counted under a(8). MATHEMATICA spsu[_, {}]:={{}}; spsu[foo_, set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@spsu[Select[foo, Complement[#, Complement[set, s]]=={}&], Complement[set, s]]]/@Cases[foo, {i, ___}]; ptnpos[y_]:=Position[Table[1, {#}]&/@y, 1]; ptnverts[y_]:=Select[Join@@Table[Subsets[ptnpos[y], {k}], {k, Reverse[Union[y]]}], UnsameQ@@First/@#&]; Table[Length[Select[IntegerPartitions[n], Select[spsu[ptnverts[#], ptnpos[#]], Function[p, Sort[Length/@p]==Sort[#]]]=={}&]], {n, 8}] CROSSREFS The complement is counted by A321729. Cf. A000110, A000258, A000700, A000701, A008277, A046682, A319616, A321730, A321737, A321738. The following pertain to the conjecture. Half-loop-graphical partitions by length are A029889 or A339843 (covering). The version for full loops is A339655. A027187 counts partitions of even length, with Heinz numbers A028260. A058696 counts partitions of even numbers, ranked by A300061. A320663/A339888 count unlabeled multiset partitions into singletons/pairs. A322661 counts labeled covering half-loop-graphs, ranked by A340018/A340019. A339659 counts graphical partitions of 2n into k parts. Cf. A006129, A025065, A062740, A095268, A096373, A167171, A320461, A338915, A339842, A339844, A339845. Sequence in context: A027340 A000701 A123975 * A214077 A094984 A107332 Adjacent sequences:  A321725 A321726 A321727 * A321729 A321730 A321731 KEYWORD nonn,more AUTHOR Gus Wiseman, Nov 18 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 15:40 EDT 2021. Contains 347643 sequences. (Running on oeis4.)