login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321725
Irregular triangle read by rows where T(n,d) is the number of d X d non-normal semi-magic squares with sum of all entries equal to n.
3
1, 1, 2, 1, 6, 1, 3, 24, 1, 120, 1, 4, 21, 720, 1, 5040, 1, 5, 282, 40320, 1, 55, 362880, 1, 6, 6210, 3628800, 1, 39916800, 1, 7, 120, 2008, 202410, 479001600, 1, 6227020800, 1, 8, 9135630, 87178291200, 1, 231, 153040, 1307674368000, 1, 9, 10147
OFFSET
1,3
COMMENTS
A non-normal semi-magic square is a nonnegative integer square matrix with all row sums and column sums equal to d, for some d|n.
FORMULA
T(n,n) = n!. Sum_d T(n,d) = A321719(n). - Chai Wah Wu, Jan 15 2019
EXAMPLE
Triangle begins:
1
1 2
1 6
1 3 24
1 120
1 4 21 720
The a(6,2) = 4 semi-magic squares (zeros not shown):
[3 ] [2 1] [1 2] [ 3]
[ 3] [1 2] [2 1] [3 ]
The a(6,3) = 21 semi-magic squares (zeros not shown):
[2 ] [2 ] [2 ] [1 1 ] [1 1 ] [1 1 ] [1 1 ]
[ 2 ] [ 1 1] [ 2] [1 1 ] [1 1] [ 1 1] [ 2]
[ 2] [ 1 1] [ 2 ] [ 2] [ 1 1] [1 1] [1 1 ]
.
[1 1] [1 1] [1 1] [1 1] [ 2 ] [ 2 ] [ 2 ]
[1 1 ] [1 1] [ 2 ] [ 1 1] [2 ] [1 1] [ 2]
[ 1 1] [ 2 ] [1 1] [1 1 ] [ 2] [1 1] [2 ]
.
[ 1 1] [ 1 1] [ 1 1] [ 1 1] [ 2] [ 2] [ 2]
[2 ] [1 1 ] [1 1] [ 1 1] [2 ] [1 1 ] [ 2 ]
[ 1 1] [1 1] [1 1 ] [2 ] [ 2 ] [1 1 ] [2 ]
MATHEMATICA
prs2mat[prs_]:=Table[Count[prs, {i, j}], {i, Union[First/@prs]}, {j, Union[Last/@prs]}];
multsubs[set_, k_]:=If[k==0, {{}}, Join@@Table[Prepend[#, set[[i]]]&/@multsubs[Drop[set, i-1], k-1], {i, Length[set]}]];
Table[Length[Select[multsubs[Tuples[Range[n], 2], n], And[Union[First/@#]==Range[k]==Union[Last/@#], SameQ@@Total/@prs2mat[#], SameQ@@Total/@Transpose[prs2mat[#]]]&]], {n, 5}, {k, Divisors[n]}]
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, Nov 18 2018
EXTENSIONS
a(15)-a(48) from Chai Wah Wu, Jan 15 2019
STATUS
approved