OFFSET
1,3
COMMENTS
A non-normal semi-magic square is a nonnegative integer square matrix with all row sums and column sums equal to d, for some d|n.
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..60
Wikipedia, Magic square
FORMULA
T(n,n) = n!. Sum_d T(n,d) = A321719(n). - Chai Wah Wu, Jan 15 2019
EXAMPLE
Triangle begins:
1
1 2
1 6
1 3 24
1 120
1 4 21 720
The a(6,2) = 4 semi-magic squares (zeros not shown):
[3 ] [2 1] [1 2] [ 3]
[ 3] [1 2] [2 1] [3 ]
The a(6,3) = 21 semi-magic squares (zeros not shown):
[2 ] [2 ] [2 ] [1 1 ] [1 1 ] [1 1 ] [1 1 ]
[ 2 ] [ 1 1] [ 2] [1 1 ] [1 1] [ 1 1] [ 2]
[ 2] [ 1 1] [ 2 ] [ 2] [ 1 1] [1 1] [1 1 ]
.
[1 1] [1 1] [1 1] [1 1] [ 2 ] [ 2 ] [ 2 ]
[1 1 ] [1 1] [ 2 ] [ 1 1] [2 ] [1 1] [ 2]
[ 1 1] [ 2 ] [1 1] [1 1 ] [ 2] [1 1] [2 ]
.
[ 1 1] [ 1 1] [ 1 1] [ 1 1] [ 2] [ 2] [ 2]
[2 ] [1 1 ] [1 1] [ 1 1] [2 ] [1 1 ] [ 2 ]
[ 1 1] [1 1] [1 1 ] [2 ] [ 2 ] [1 1 ] [2 ]
MATHEMATICA
prs2mat[prs_]:=Table[Count[prs, {i, j}], {i, Union[First/@prs]}, {j, Union[Last/@prs]}];
multsubs[set_, k_]:=If[k==0, {{}}, Join@@Table[Prepend[#, set[[i]]]&/@multsubs[Drop[set, i-1], k-1], {i, Length[set]}]];
Table[Length[Select[multsubs[Tuples[Range[n], 2], n], And[Union[First/@#]==Range[k]==Union[Last/@#], SameQ@@Total/@prs2mat[#], SameQ@@Total/@Transpose[prs2mat[#]]]&]], {n, 5}, {k, Divisors[n]}]
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, Nov 18 2018
EXTENSIONS
a(15)-a(48) from Chai Wah Wu, Jan 15 2019
STATUS
approved