Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Feb 03 2022 16:43:36
%S 1,1,2,1,6,1,3,24,1,120,1,4,21,720,1,5040,1,5,282,40320,1,55,362880,1,
%T 6,6210,3628800,1,39916800,1,7,120,2008,202410,479001600,1,6227020800,
%U 1,8,9135630,87178291200,1,231,153040,1307674368000,1,9,10147
%N Irregular triangle read by rows where T(n,d) is the number of d X d non-normal semi-magic squares with sum of all entries equal to n.
%C A non-normal semi-magic square is a nonnegative integer square matrix with all row sums and column sums equal to d, for some d|n.
%H Chai Wah Wu, <a href="/A321725/b321725.txt">Table of n, a(n) for n = 1..60</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Magic_square">Magic square</a>
%H <a href="/index/Mag#magic">Index entries for sequences related to magic squares</a>
%F T(n,n) = n!. Sum_d T(n,d) = A321719(n). - _Chai Wah Wu_, Jan 15 2019
%e Triangle begins:
%e 1
%e 1 2
%e 1 6
%e 1 3 24
%e 1 120
%e 1 4 21 720
%e The a(6,2) = 4 semi-magic squares (zeros not shown):
%e [3 ] [2 1] [1 2] [ 3]
%e [ 3] [1 2] [2 1] [3 ]
%e The a(6,3) = 21 semi-magic squares (zeros not shown):
%e [2 ] [2 ] [2 ] [1 1 ] [1 1 ] [1 1 ] [1 1 ]
%e [ 2 ] [ 1 1] [ 2] [1 1 ] [1 1] [ 1 1] [ 2]
%e [ 2] [ 1 1] [ 2 ] [ 2] [ 1 1] [1 1] [1 1 ]
%e .
%e [1 1] [1 1] [1 1] [1 1] [ 2 ] [ 2 ] [ 2 ]
%e [1 1 ] [1 1] [ 2 ] [ 1 1] [2 ] [1 1] [ 2]
%e [ 1 1] [ 2 ] [1 1] [1 1 ] [ 2] [1 1] [2 ]
%e .
%e [ 1 1] [ 1 1] [ 1 1] [ 1 1] [ 2] [ 2] [ 2]
%e [2 ] [1 1 ] [1 1] [ 1 1] [2 ] [1 1 ] [ 2 ]
%e [ 1 1] [1 1] [1 1 ] [2 ] [ 2 ] [1 1 ] [2 ]
%t prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
%t multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
%t Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[k]==Union[Last/@#],SameQ@@Total/@prs2mat[#],SameQ@@Total/@Transpose[prs2mat[#]]]&]],{n,5},{k,Divisors[n]}]
%Y Cf. A006052, A007016, A120732, A319056, A319616.
%Y Cf. A321718, A321719, A321721, A321722, A321724.
%K nonn,tabf
%O 1,3
%A _Gus Wiseman_, Nov 18 2018
%E a(15)-a(48) from _Chai Wah Wu_, Jan 15 2019