OFFSET
1,1
COMMENTS
An integer partition is graphical if it comprises the multiset of vertex-degrees of some graph, and multigraphical if it comprises the multiset of vertex-degrees of some multigraph.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
LINKS
Eric Weisstein's World of Mathematics, Degree Sequence.
EXAMPLE
The sequence of terms together with their prime indices begins:
9: {2,2} 189: {2,2,2,4} 363: {2,5,5}
25: {3,3} 196: {1,1,4,4} 364: {1,1,4,6}
30: {1,2,3} 198: {1,2,2,5} 385: {3,4,5}
49: {4,4} 210: {1,2,3,4} 390: {1,2,3,6}
63: {2,2,4} 220: {1,1,3,5} 441: {2,2,4,4}
70: {1,3,4} 250: {1,3,3,3} 442: {1,6,7}
75: {2,3,3} 264: {1,1,1,2,5} 462: {1,2,4,5}
84: {1,1,2,4} 273: {2,4,6} 468: {1,1,2,2,6}
100: {1,1,3,3} 280: {1,1,1,3,4} 484: {1,1,5,5}
121: {5,5} 286: {1,5,6} 490: {1,3,4,4}
147: {2,4,4} 289: {7,7} 495: {2,2,3,5}
154: {1,4,5} 325: {3,3,6} 507: {2,6,6}
165: {2,3,5} 343: {4,4,4} 520: {1,1,1,3,6}
169: {6,6} 351: {2,2,2,6} 525: {2,3,3,4}
175: {3,3,4} 361: {8,8} 529: {9,9}
For example, a complete list of all multigraphs with degrees (4,2,2,2) is:
{{1,2},{1,2},{1,3},{1,4},{3,4}}
{{1,2},{1,3},{1,3},{1,4},{2,4}}
{{1,2},{1,3},{1,4},{1,4},{2,3}}
Since none of these is strict, i.e., a graph, the Heinz number 189 is in the sequence.
MATHEMATICA
strr[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[strr[n/d], Min@@#>=d&]], {d, Select[Divisors[n], And[SquareFreeQ[#], PrimeOmega[#]==2]&]}]];
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]], {#1}]&, If[n==1, {}, Flatten[Cases[FactorInteger[n]//Reverse, {p_, k_}:>Table[PrimePi[p], {k}]]]]];
Select[Range[100], EvenQ[Length[nrmptn[#]]]&& Select[strr[Times@@Prime/@nrmptn[#]], UnsameQ@@#&]=={}&&strr[Times@@Prime/@nrmptn[#]]!={}&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 27 2020
STATUS
approved