login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339842
Heinz numbers of non-graphical, multigraphical integer partitions of even numbers.
5
9, 25, 30, 49, 63, 70, 75, 84, 100, 121, 147, 154, 165, 169, 175, 189, 196, 198, 210, 220, 250, 264, 273, 280, 286, 289, 325, 343, 351, 361, 363, 364, 385, 390, 441, 442, 462, 468, 484, 490, 495, 507, 520, 525, 529, 550, 561, 588, 594, 595, 616, 624, 637, 646
OFFSET
1,1
COMMENTS
An integer partition is graphical if it comprises the multiset of vertex-degrees of some graph, and multigraphical if it comprises the multiset of vertex-degrees of some multigraph.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
FORMULA
Equals A320924 /\ A339618.
Equals A320924 \ A320922.
EXAMPLE
The sequence of terms together with their prime indices begins:
9: {2,2} 189: {2,2,2,4} 363: {2,5,5}
25: {3,3} 196: {1,1,4,4} 364: {1,1,4,6}
30: {1,2,3} 198: {1,2,2,5} 385: {3,4,5}
49: {4,4} 210: {1,2,3,4} 390: {1,2,3,6}
63: {2,2,4} 220: {1,1,3,5} 441: {2,2,4,4}
70: {1,3,4} 250: {1,3,3,3} 442: {1,6,7}
75: {2,3,3} 264: {1,1,1,2,5} 462: {1,2,4,5}
84: {1,1,2,4} 273: {2,4,6} 468: {1,1,2,2,6}
100: {1,1,3,3} 280: {1,1,1,3,4} 484: {1,1,5,5}
121: {5,5} 286: {1,5,6} 490: {1,3,4,4}
147: {2,4,4} 289: {7,7} 495: {2,2,3,5}
154: {1,4,5} 325: {3,3,6} 507: {2,6,6}
165: {2,3,5} 343: {4,4,4} 520: {1,1,1,3,6}
169: {6,6} 351: {2,2,2,6} 525: {2,3,3,4}
175: {3,3,4} 361: {8,8} 529: {9,9}
For example, a complete list of all multigraphs with degrees (4,2,2,2) is:
{{1,2},{1,2},{1,3},{1,4},{3,4}}
{{1,2},{1,3},{1,3},{1,4},{2,4}}
{{1,2},{1,3},{1,4},{1,4},{2,3}}
Since none of these is strict, i.e., a graph, the Heinz number 189 is in the sequence.
MATHEMATICA
strr[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[strr[n/d], Min@@#>=d&]], {d, Select[Divisors[n], And[SquareFreeQ[#], PrimeOmega[#]==2]&]}]];
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]], {#1}]&, If[n==1, {}, Flatten[Cases[FactorInteger[n]//Reverse, {p_, k_}:>Table[PrimePi[p], {k}]]]]];
Select[Range[100], EvenQ[Length[nrmptn[#]]]&& Select[strr[Times@@Prime/@nrmptn[#]], UnsameQ@@#&]=={}&&strr[Times@@Prime/@nrmptn[#]]!={}&]
CROSSREFS
See link for additional cross references.
Distinct prime shadows (images under A181819) of A340017.
A000070 counts non-multigraphical partitions (A339620).
A000569 counts graphical partitions (A320922).
A027187 counts partitions of even length (A028260).
A058696 counts partitions of even numbers (A300061).
A096373 cannot be partitioned into strict pairs.
A209816 counts multigraphical partitions (A320924).
A320663/A339888 count unlabeled multiset partitions into singletons/pairs.
A320893 can be partitioned into distinct pairs but not into strict pairs.
A339560 can be partitioned into distinct strict pairs.
A339617 counts non-graphical partitions of 2n (A339618).
A339659 counts graphical partitions of 2n into k parts.
Sequence in context: A020252 A076486 A270337 * A068529 A096059 A326742
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 27 2020
STATUS
approved