login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076486
Solutions to gcd(sigma(x), phi(x)) < gcd(sigma(core(x)), phi(core(x))), i.e., when A009223(x) < A066086(x) or if A066087(x) < 0.
2
9, 25, 28, 36, 45, 50, 52, 75, 76, 81, 84, 90, 98, 100, 117, 121, 124, 144, 148, 150, 153, 156, 175, 180, 208, 225, 228, 234, 242, 244, 245, 252, 261, 268, 275, 289, 292, 300, 304, 306, 316, 324, 325, 333, 338, 360, 364, 369, 372, 380, 388, 392, 400, 405, 412
OFFSET
1,1
LINKS
EXAMPLE
For n=9: sigma(9)=13, phi(9)=6, gcd(13,6)=1, core(9)=3, sigma(3)=4, phi(3)=2, gcd(4,2)=2.
MATHEMATICA
ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] cor[x_] := Apply[Times, ba[x]] g1[x_] := GCD[DivisorSigma[1, x], EulerPhi[x]] g2[x_] := GCD[DivisorSigma[1, cor[x]], EulerPhi[cor[x]]] Do[s1=g1[n]; s2=g2[n]; If[Greater[s2, s1], Print[n]], {n, 1, 256}]
KEYWORD
nonn
AUTHOR
Labos Elemer, Oct 17 2002
STATUS
approved