The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A270337 Composite numbers equal to the number of divisors of one of their powers. 2
 9, 25, 28, 40, 45, 49, 81, 121, 153, 169, 225, 289, 325, 343, 361, 441, 529, 625, 640, 841, 961, 976, 1089, 1225, 1369, 1521, 1681, 1849, 2133, 2197, 2209, 2401, 2541, 2601, 2809, 3025, 3249, 3481, 3721, 4225, 4489, 4753, 4761, 4851, 5041, 5329, 5929, 6241, 6348, 6561, 6859, 6889 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Prime numbers are not considered since every prime p satisfies p = d(p^(p-1)), where d() represents the number of divisors. In general, p^k = d((p^k)^((p^k-1)/k)) for any prime p and for any power k such that (p^k-1)/k is an integer. LINKS Paolo P. Lava, First 50 terms with their powers EXAMPLE 9 = d(9^4); 28 = d(28^3); 153 = d(153^8); etc. MAPLE with(numtheory): P:=proc(q) local a, k, n; for n from 2 to q do if not isprime(n) then a:=tau(n); k:=0; while a 0) > 0]] (* Michael De Vlieger, Mar 17 2016, Version 10.2 *) CROSSREFS Cf. A000005, A073049, A270389. Sequence in context: A321874 A020252 A076486 * A339842 A068529 A096059 Adjacent sequences:  A270334 A270335 A270336 * A270338 A270339 A270340 KEYWORD nonn,easy AUTHOR Paolo P. Lava, Mar 15 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 22 14:23 EST 2021. Contains 340362 sequences. (Running on oeis4.)