login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300121
Number of normal generalized Young tableaux, of shape the integer partition with Heinz number n, with all rows and columns weakly increasing and all regions connected skew partitions.
39
1, 1, 2, 2, 4, 5, 8, 4, 11, 12, 16, 12, 32, 28, 31, 8, 64, 31, 128, 33, 82, 64, 256, 28, 69, 144, 69, 86, 512, 105, 1024, 16, 208, 320, 209, 82, 2048, 704, 512, 86, 4096, 318, 8192, 216, 262, 1536, 16384, 64, 465, 262, 1232, 528, 32768, 209, 588, 245, 2912, 3328
OFFSET
1,3
COMMENTS
The diagram of a connected skew partition is required to be connected as a polyomino but can have empty rows or columns. A generalized Young tableau of shape y is an array obtained by replacing the dots in the Ferrers diagram of y with positive integers. A tableau is normal if its entries span an initial interval of positive integers. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
EXAMPLE
The a(9) = 11 tableaux:
1 1
1 1
.
2 1 1 1 1 1 1 2
1 1 1 2 2 2 1 2
.
1 1 1 2 1 2 1 3
2 3 1 3 3 3 2 3
.
1 2 1 3
3 4 2 4
MATHEMATICA
undcon[y_]:=Select[Tuples[Range[0, #]&/@y], Function[v, GreaterEqual@@v&&With[{r=Select[Range[Length[y]], y[[#]]=!=v[[#]]&]}, Or[Length[r]<=1, And@@Table[v[[i]]<y[[i+1]], {i, Range[Min@@r, Max@@r-1]}]]]]];
cos[y_]:=cos[y]=With[{sam=Most[undcon[y]]}, If[Length[sam]===0, If[Total[y]===0, {{}}, {}], Join@@Table[Prepend[#, y]&/@cos[sam[[k]]], {k, 1, Length[sam]}]]];
primeMS[n_]:=If[n===1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Table[Length[cos[Reverse[primeMS[n]]]], {n, 50}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 25 2018
STATUS
approved