|
|
A300123
|
|
Number of ways to tile the diagram of the integer partition with Heinz number n using connected skew partitions.
|
|
6
|
|
|
1, 1, 2, 2, 4, 4, 8, 4, 10, 8, 16, 8, 32, 16, 20, 8, 64, 20, 128, 16, 40, 32, 256, 16, 52, 64, 52, 32, 512, 40, 1024, 16, 80, 128, 104, 40, 2048, 256, 160, 32, 4096, 80, 8192, 64, 104, 512, 16384, 32, 272, 104
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
The diagram of a connected skew partition is required to be connected as a polyomino but can have empty rows or columns. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
|
|
LINKS
|
Table of n, a(n) for n=1..50.
Solomon W. Golomb, Tiling with polyominoes, Journal of Combinatorial Theory, 1-2 (1966), 280-296.
Gus Wiseman, The a(25) = 52 connected tilings of (3,3).
|
|
CROSSREFS
|
Cf. A000085, A000898, A056239, A006958, A238690, A259479, A259480, A296150, A296561, A297388, A299699, A299925, A299926, A300060, A300118, A300120, A300121, A300122, A300124.
Sequence in context: A292253 A115209 A139210 * A175359 A336125 A353125
Adjacent sequences: A300120 A300121 A300122 * A300124 A300125 A300126
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Gus Wiseman, Feb 25 2018
|
|
STATUS
|
approved
|
|
|
|