login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300125
Number of closable Motzkin trees.
0
0, 1, 1, 2, 5, 11, 26, 65, 163, 417, 1086, 2858, 7599, 20391, 55127, 150028, 410719, 1130245, 3124770, 8675210, 24175809, 67603633, 189633981, 533463183, 1504644945, 4254179693, 12055097308, 34231674486, 97392368007, 277590288931, 792528581088
OFFSET
0,4
COMMENTS
From the Bodini-Tarau paper: a closable Motzkin tree is "the skeleton of at least one closed lambda term".
LINKS
Olivier Bodini, Paul Tarau, On Uniquely Closable and Uniquely Typable Skeletons of Lambda Terms, arXiv:1709.04302 [cs.PL], 2017.
MAPLE
f:= gfun:-rectoproc({
(384*n^2 +384*n) *a(n ) +
(-32*n^2-512*n-480) *a(n+1) +
(-368*n^2 -2192*n-2928) *a(n+2) +
(-56*n^2 -344*n-504) *a(n+3) +
(-4*n^2 +188*n+852) *a(n+4) +
(110*n^2 +1034*n+2328) *a(n+5) +
(-21*n^2 -201*n-390) *a(n+6) +
(-21*n^2 -327*n-1272) *a(n+7) +
(9*n^2 +153*n+648) *a(n+8) +
(-n^2 -19*n-90) *a(n+9) = 0,
a(0) = 0, a(1) = 0, a(2) = 1, a(3) = 1, a(4) = 2, a(5) = 5, a(6) = 11, a(7) = 26, a(8) = 65
}, a(n), remember): map(f, [$1..64]); # Georg Fischer, Mar 29 2020 (from the Bodini-Tarau paper)
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael De Vlieger, Feb 25 2018
EXTENSIONS
More terms from Georg Fischer, Mar 29 2020
STATUS
approved