login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60, we have over 367,000 sequences, and we’ve crossed 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A300126 Number of Motzkin trees that are "uniquely closable skeletons". 2
0, 1, 0, 1, 1, 2, 2, 7, 5, 20, 19, 60, 62, 202, 202, 679, 711, 2304, 2507, 8046, 8856, 28434, 31855, 101288, 115596, 364710, 421654, 1323946, 1549090, 4836072, 5724582, 17771683, 21250527, 65653884, 79227989, 243639954, 296543356, 907841678, 1113706887 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,6
COMMENTS
From the Bodini-Tarau paper: "Uniquely closable skeletons of lambda terms are Motzkin-trees that predetermine the unique closed lambda term that can be obtained by labeling their leaves with de Bruijn indices".
For the relation to the set of Motzkin trees where all leaves are at the same unary height see A321396. - Peter Luschny, Nov 14 2018
LINKS
Olivier Bodini, Paul Tarau, On Uniquely Closable and Uniquely Typable Skeletons of Lambda Terms, arXiv:1709.04302 [cs.PL], 2017.
FORMULA
G.f.: -(sqrt(2*z*(sqrt(1 - 4*z^2) - 1) + 1) - 1)/(2*z^2). - Peter Luschny, Nov 14 2018
MAPLE
gf := -(sqrt(2*z*(sqrt(1 - 4*z^2) - 1) + 1) - 1)/(2*z^2):
series(gf, z, 44): seq(coeff(%, z, n), n=0..38); # Peter Luschny, Nov 14 2018
MATHEMATICA
CoefficientList[Series[(1-Sqrt[1 + 2*x*(Sqrt[1-4*x^2]-1)])/(2*x^2), {x, 0, 50}], x] (* G. C. Greubel, Nov 14 2018 *)
PROG
(PARI) x='x+O('x^50); concat([0], Vec((1-sqrt(1 + 2*x*(sqrt(1-4*x^2) -1)))/(2*x^2))) \\ G. C. Greubel, Nov 14 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); [0] cat Coefficients(R!( (1-Sqrt(1 + 2*x*(Sqrt(1-4*x^2) -1)))/(2*x^2) )); // G. C. Greubel, Nov 14 2018
(Sage) s= (-(sqrt(2*x*(sqrt(1 - 4*x^2) - 1) + 1) - 1)/(2*x^2)).series(x, 30);
s.coefficients(x, sparse=False) # G. C. Greubel, Nov 14 2018
CROSSREFS
Cf. A000108, A001006, A135501, A321396 (row 1).
Sequence in context: A249493 A223000 A058625 * A006748 A193548 A131049
KEYWORD
nonn
AUTHOR
Michael De Vlieger, Feb 25 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 23:26 EST 2023. Contains 367503 sequences. (Running on oeis4.)