login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257926
Least positive integer k such that prime(k*n)+2 = prime(i*n)*prime(j*n) for some 0 < i < j.
7
6, 4, 10, 8, 451, 426, 622, 175, 1424, 500, 33, 703, 1761, 4428, 1563, 959, 8147, 7055, 5948, 250, 7517, 12706, 8405, 2948, 2610, 1949, 10424, 2214, 6722, 1963, 3335, 16382, 15687, 17591, 15073, 7818, 32202, 31169, 2248, 14899, 69955, 7580, 2393, 39295, 42352, 5884, 9367, 3630, 14090, 1305
OFFSET
1,1
COMMENTS
Conjecture: a(n) exists for any n > 0.
This is much stronger than Chen's famous result that there are infinitely many Chen primes.
REFERENCES
Jing-run Chen, On the representation of a large even integer as the sum of a prime and a product of at most two primes, Sci. Sinica 16(1973), 157-176.
Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
LINKS
Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.
EXAMPLE
a(1) = 6 since prime(6*1)+2 = 15 = 3*5 = prime(2*1)*prime(3*1).
a(3) = 10 since prime(10*3)+2 = 115 = 5*23 = prime(1*3)*prime(3*3).
a(149) = 1476387 since prime(1476387*149)+2 = 4666119529 = 8311*561439 = prime(7*149)*prime(310*149).
MATHEMATICA
Dv[n_]:=Divisors[Prime[n]+2]
L[n_]:=Length[Dv[n]]
P[k_, n_]:=L[k*n]==4&&PrimeQ[Part[Dv[k*n], 2]]&&Mod[PrimePi[Part[Dv[k*n], 2]], n]==0&&PrimeQ[Part[Dv[k*n], 3]]&&Mod[PrimePi[Part[Dv[k*n], 3]], n]==0
Do[k=0; Label[bb]; k=k+1; If[P[k, n], Goto[aa]]; Goto[bb]; Label[aa]; Print[n, " ", k]; Continue, {n, 1, 50}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jul 14 2015
STATUS
approved