login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116946
Closest semiprime to n-th semiprime S that is different from S (break ties by taking the smaller semiprime).
2
6, 4, 10, 9, 15, 14, 22, 21, 26, 25, 34, 33, 34, 39, 38, 49, 51, 49, 57, 58, 57, 65, 62, 65, 77, 74, 85, 86, 85, 86, 93, 94, 93, 94, 111, 115, 118, 119, 118, 122, 121, 122, 133, 134, 133, 142, 141, 142, 146, 145, 158, 159, 158, 159, 169, 166, 178, 177, 185
OFFSET
1,1
LINKS
EXAMPLE
Closest semiprimes to 4, 6, 9, 10, 14, 15, 21 are 6, 4, 10, 9, 15, 14, 22.
MATHEMATICA
csp[{a_, b_, c_}]:=If[c-b<b-a, c, a]; Join[{6}, csp/@Partition[Select[Range[ 300], PrimeOmega[#]==2&], 3, 1]] (* Harvey P. Dale, May 06 2014 *)
PROG
(Python)
from sympy import factorint
def semiprime(n): return sum(e for e in factorint(n).values()) == 2
def nextsemiprime(n):
nxt = n + 1
while not semiprime(nxt): nxt += 1
return nxt
def aupton(terms):
prv, cur, nxt, alst = 0, 4, 6, []
while len(alst) < terms:
alst.append(prv if 2*cur - prv <= nxt else nxt)
prv, cur, nxt = cur, nxt, nextsemiprime(nxt)
return alst
print(aupton(59)) # Michael S. Branicky, Jun 04 2021
CROSSREFS
Cf. A001358 (semiprimes), A051701 (analog for primes).
Sequence in context: A182164 A294093 A257926 * A357128 A141270 A040032
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Mar 25 2006
EXTENSIONS
Corrected by Harvey P. Dale, May 06 2014
STATUS
approved