login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320857
a(n) = Pi(8,5)(n) + Pi(8,7)(n) - Pi(8,1)(n) - Pi(8,3)(n) where Pi(a,b)(x) denotes the number of primes in the arithmetic progression a*k + b less than or equal to x.
15
0, 0, -1, -1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2
OFFSET
1,31
COMMENTS
a(n) is the number of odd primes <= n that have -2 as a quadratic nonresidue minus the number of primes <= n that have -2 as a quadratic residue.
It seems that there are more negative terms here than in some other sequences mentioned in crossrefs; nevertheless, among the first 10000 terms, only 212 ones are negative.
In general, assuming the strong form of the Riemann Hypothesis, if 0 < a, b < k are integers, gcd(a, k) = gcd(b, k) = 1, a is a quadratic residue and b is a quadratic nonresidue mod k, then Pi(k,b)(n) > Pi(k,a)(n) occurs more often than not. This phenomenon is called "Chebyshev's bias". (See Wikipedia link and especially the links in A007350.) [Edited by Peter Munn, Nov 18 2023]
Here, although 3 is not a quadratic residue modulo 8, for most n we have Pi(8,5)(n) + Pi(8,7)(n) > Pi(8,1)(n) - Pi(8,3)(n), Pi(8,3)(n) + Pi(8,7)(n) > Pi(8,1)(n) + Pi(8,5)(n) and Pi(8,5)(n) + Pi(8,7)(n) > Pi(8,1)(n) + Pi(8,7)(n).
LINKS
Andrew Granville and Greg Martin, Prime number races, Amer. Math. Monthly, 113 (No. 1, 2006), 1-33.
Wikipedia, Chebyshev's bias.
FORMULA
a(n) = -Sum_{primes p<=n} Kronecker(-2,p) = -Sum_{primes p<=n} A188510(p).
EXAMPLE
Pi(8,1)(200) = 8, Pi(8,5)(200) = 13, Pi(8,3)(200) = Pi(8,7)(200) = 12, so a(200) = 13 + 12 - 8 - 12 = 5.
MATHEMATICA
Accumulate@ Array[-If[PrimeQ@ #, KroneckerSymbol[-2, #], 0] &, 88] (* Michael De Vlieger, Nov 25 2018 *)
PROG
(PARI) a(n) = -sum(i=1, n, isprime(i)*kronecker(-2, i))
CROSSREFS
Let d be a fundamental discriminant.
Sequences of the form "a(n) = -Sum_{primes p<=n} Kronecker(d,p)" with |d| <= 12: A321860 (d=-11), this sequence (d=-8), A321859 (d=-7), A066520 (d=-4), A321856 (d=-3), A321857 (d=5), A071838 (d=8), A321858 (d=12).
Sequences of the form "a(n) = -Sum_{i=1..n} Kronecker(d,prime(i))" with |d| <= 12: A321865 (d=-11), A320858 (d=-8), A321864 (d=-7), A038698 (d=-4), A112632 (d=-3), A321862 (d=5), A321861 (d=8), A321863 (d=12).
Sequence in context: A095139 A109038 A208246 * A211664 A182434 A185679
KEYWORD
sign
AUTHOR
Jianing Song, Nov 24 2018
STATUS
approved