The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A066522 Numbers n whose divisors less than or equal to sqrt(n) are consecutive, from 1 up to some number k. 4
 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 17, 18, 19, 22, 23, 24, 26, 29, 31, 34, 37, 38, 41, 43, 46, 47, 53, 58, 59, 60, 61, 62, 67, 71, 73, 74, 79, 82, 83, 86, 89, 94, 97, 101, 103, 106, 107, 109, 113, 118, 122, 127, 131, 134, 137, 139, 142, 146, 149, 151, 157 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The sequence consists of all numbers of the form p or 2p with p prime, along with 1, 8, 12, 18, 24 and 60. Sketch of proof: If k<=2 then n=1 or 8 or p or 2p. If k>2, then one of the numbers k+1, ..., k+4 is == 2 (mod 4); call it m. Then m/2 is an odd number <= k, so m = 2 * (m/2) divides n. Since m is not among 1,2,...,k, it must be greater than sqrt(n), so sqrt(n) < m <= k+4. Also, n is divisible by all positive integers <= k, including k, k-1 and k-2, whose least common multiple is their product divided by 1 or 2. So n >= k(k-1)(k-2)/2. Combining these inequalities implies k<=7 and n<=120. Changing the definition to use "less than sqrt(n)" doesn't change the sequence. - Stewart Gordon, Sep 27 2011 LINKS Harry J. Smith, Table of n, a(n) for n = 1..1000 J. G. van der Galien, The Dawn of Science. EXAMPLE 60 = 1*60 = 2*30 = 3*20 = 4*15 = 5*12 = 6*10. MATHEMATICA test[n_] := Module[{}, d=Divisors[n]; d=Take[d, Ceiling[Length[d]/2]]; Last[d]==Length[d]]; Select[Range[1, 200], test] cdQ[n_]:=Module[{d=Union[Differences[Select[Divisors[n], #<=Sqrt[n]&]]]}, d=={}||d=={1}]; Select[Range, cdQ] (* Harvey P. Dale, Feb 12 2017 *) PROG (PARI) { n=0; for (m=1, 10^10, d=divisors(m); b=1; for (i=2, ceil(length(d)/2), if (d[i] - d[i-1] > 1, b=0; break)); if (b, write("b066522.txt", n++, " ", m); if (n==1000, return)) ) } \\ Harry J. Smith, Feb 21 2010 (Haskell) import Data.List (genericLength) a066522 n = a066522_list !! (n-1) a066522_list = filter f [1..] where    f x = genericLength ds == maximum ds where ds = a161906_row x -- Reinhard Zumkeller, Jun 24 2015, Nov 14 2011 CROSSREFS Cf. A066664 (composite terms); A074964, A000196. Cf. A161906. Sequence in context: A209638 A191844 A096157 * A193159 A308018 A242455 Adjacent sequences:  A066519 A066520 A066521 * A066523 A066524 A066525 KEYWORD nonn,nice,easy AUTHOR Johan G. van der Galien (galien8(AT)zonnet.nl), Jan 05 2002 EXTENSIONS Edited by Dean Hickerson, Jan 07 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 24 11:35 EDT 2021. Contains 345416 sequences. (Running on oeis4.)