The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A076626 Array of coefficients of polynomials p(n,x) = 2^(n-1)*Product_{i=0..n} (x - cos(i*Pi/n)) of degree (n+1) with P(-1,x)) = 1, P(0,x) = 0. 1
 1, 0, 0, -1, 0, 1, 0, -2, 0, 2, 1, 0, -5, 0, 4, 0, 4, 0, -12, 0, 8, -1, 0, 13, 0, -28, 0, 16, 0, -6, 0, 38, 0, -64, 0, 32, 1, 0, -25, 0, 104, 0, -144, 0, 64, 0, 8, 0, -88, 0, 272, 0, -320, 0, 128, -1, 0, 41, 0, -280, 0, 688, 0, -704, 0, 256, 0, -10, 0, 170, 0, -832, 0, 1696, 0, -1536, 0, 512, 1, 0, -61, 0, 620, 0, -2352, 0, 4096, 0, -3328, 0, 1024 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 COMMENTS Mirror image of triangle in A201863. - Philippe Deléham, Dec 07 2011 LINKS FORMULA T(n,k) = 2*T(n-1,k-1) - T(n-2,k). - Philippe Deléham, Dec 07 2011 EXAMPLE p(4,x) = 8*x^5 - 12*x^3 + 4*x hence 0,4,0,-12,0,8 are terms in the sequence. From Philippe Deléham, Dec 07 2011: (Start) Triangle begins:    1;    0,    0;   -1,    0,    1;    0,   -2,    0,    2;    1,    0,   -5,    0,    4;    0,    4,    0,  -12,    0,    8;   -1,    0,   13,    0,  -28,    0,   16;    0,   -6,    0,   38,    0,  -64,    0,   32;    1,    0,  -25,    0,  104,    0, -144,    0,   64; (End) CROSSREFS Cf. A201863, A201509. Sequence in context: A157030 A080844 A321428 * A182886 A108731 A235168 Adjacent sequences:  A076623 A076624 A076625 * A076627 A076628 A076629 KEYWORD sign,tabl AUTHOR Benoit Cloitre, Oct 22 2002 EXTENSIONS Definition corrected by Philippe Deléham, Dec 07 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 27 19:10 EST 2020. Contains 332308 sequences. (Running on oeis4.)