login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336167
Irregular triangular array read by rows. T(n,k) is the number of forests on n unlabeled nodes with exactly k distinct isomorphism classes of trees.
0
1, 0, 1, 0, 2, 0, 2, 1, 0, 4, 2, 0, 4, 6, 0, 9, 10, 1, 0, 12, 22, 3, 0, 27, 40, 9, 0, 49, 80, 24, 0, 111, 163, 53, 2, 0, 236, 342, 126, 6, 0, 562, 738, 280, 21, 0, 1302, 1662, 634, 60, 0, 3172, 3838, 1423, 165, 1, 0, 7746, 9041, 3308, 412, 7, 0, 19347, 21812, 7676, 1044, 26
OFFSET
0,5
FORMULA
O.g.f.: Product_{n>=1} (y/(1 - x^n) - y + 1)^A005195(n).
EXAMPLE
1,
0, 1,
0, 2,
0, 2, 1,
0, 4, 2,
0, 4, 6,
0, 9, 10, 1,
0, 12, 22, 3,
0, 27, 40, 9,
0, 49, 80, 24,
0, 111, 163, 53, 2.
MATHEMATICA
nn = 25; f[x_] := Sum[a[n] x^n, {n, 0, nn}]; sol = SolveAlways[0 == Series[ f[x] - x Product[1/(1 - x^i)^a[i], {i, 1, nn}], {x, 0, nn}], x]; r[x_] := Sum[a[n] x^n, {n, 0, nn}] /. sol; b = Drop[Flatten[CoefficientList[Series[r[x] - 1/2 (r[x]^2 - r[x^2]), {x, 0, nn}], x]], 1]; h[list_] := Prepend[Select[list, # > 0 &], 0];
Prepend[Drop[Map[h, CoefficientList[Series[Product[(y/(1 - x^k) - y + 1)^b[[k]], {k, 1, nn}], {x, 0, nn}], {x, y}]], 1], {1}] // Grid
CROSSREFS
Cf. A035054 (column k=1), A005195 (row sums).
Sequence in context: A321428 A362615 A362614 * A076626 A182886 A108731
KEYWORD
nonn,tabf
AUTHOR
Geoffrey Critzer, Jul 10 2020
STATUS
approved