login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035054
Number of forests of identical trees.
2
1, 1, 2, 2, 4, 4, 9, 12, 27, 49, 111, 236, 562, 1302, 3172, 7746, 19347, 48630, 123923, 317956, 823178, 2144518, 5623993, 14828075, 39300482, 104636894, 279794753, 751065509, 2023446206, 5469566586, 14830879661, 40330829031, 109972429568, 300628862717
OFFSET
0,3
LINKS
N. J. A. Sloane, Transforms
FORMULA
Inverse Moebius transform of A000055.
a(n) ~ c * d^n / n^(5/2), where d = A051491 = 2.9557652856519949747148..., c = A086308 = 0.53494960614230701455... . - Vaclav Kotesovec, Aug 25 2014
MAPLE
with(numtheory):
b:= proc(n) option remember; `if`(n<=1, n,
(add(add(d*b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1))
end:
g:= proc(n) option remember; local k; `if`(n=0, 1, b(n)-
(add(b(k)*b(n-k), k=0..n) -`if`(irem(n, 2)=0, b(n/2), 0))/2)
end:
a:= n-> `if`(n=0, 1, add(g(d), d=divisors(n))):
seq(a(n), n=0..35); # Alois P. Heinz, May 18 2013
MATHEMATICA
b[n_] := b[n] = If[n <= 1, n, Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n - j], {j, 1, n-1}]/(n-1)]; g[n_] := g[n] = If[n==0, 1, b[n] - (Sum[b[k]*b[n-k], {k, 0, n}] - If[Mod[n, 2]==0, b[n/2], 0])/2]; a[n_] := If[n==0, 1, Sum[ g[d], {d, Divisors[n]}]]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Feb 19 2016, after Alois P. Heinz *)
CROSSREFS
Cf. A005195.
Sequence in context: A222736 A053656 A364752 * A099537 A109525 A243330
KEYWORD
nonn
AUTHOR
Christian G. Bower, Oct 15 1998.
STATUS
approved