login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053656
Number of cyclic graphs with oriented edges on n nodes (up to symmetry of dihedral group).
14
1, 2, 2, 4, 4, 9, 10, 22, 30, 62, 94, 192, 316, 623, 1096, 2122, 3856, 7429, 13798, 26500, 49940, 95885, 182362, 350650, 671092, 1292762, 2485534, 4797886, 9256396, 17904476, 34636834, 67126282, 130150588, 252679832, 490853416
OFFSET
1,2
COMMENTS
Also number of bracelets (or necklaces) with n red or blue beads such that the beads switch colors when bracelet is turned over.
a(n) is also the number of frieze patterns generated by filling a 1 X n block with n copies of an asymmetric motif (where the copies are chosen from original motif or a 180-degree rotated copy) and then repeating the block by translation to produce an infinite frieze pattern. (Pisanski et al.)
a(n) is also the number of minimal fibrations of a bidirectional n-cycle over the 2-bouquet up to precompositions with automorphisms of the n-cycle. (Boldi et al.) - Sebastiano Vigna, Jan 08 2018
REFERENCES
Jeb F. Willenbring, A stability result for a Hilbert series of O_n(C) invariants.
LINKS
Rémi Cocou Avohou, Joseph Ben Geloun, and Reiko Toriumi, Counting U(N)^{⊗r} ⊗ O(N)^{⊗q} invariants and tensor model observables, Eur. Phys. J. C 84, 839 (2024), see pp. 11, 27; Preprint arXiv:2404.16404 [hep-th], 2024. See pp. 18, 49.
Paolo Boldi and Sebastiano Vigna, Fibrations of Graphs, Discrete Math., 243 (2002), 21-66.
T. Pisanski, D. Schattschneider, and B. Servatius, Applying Burnside's lemma to a one-dimensional Escher problem, Math. Mag., 79 (2006), 167-180.
Jeb F. Willenbring, Home page.
A. Yajima, How to calculate the number of stereoisomers of inositol-homologs, Bull. Chem. Soc. Jpn. 2014, 87, 1260-1264. See Tables 1 and 2 (and text).
FORMULA
G.f.: x/(1-x) + x^2/(2*(1-2*x^2)) + Sum_{n >= 1} (x^(2*n)/(2*n)) * Sum_{ d divides n } phi(d)/(1-x^d)^(2*n/d), or x^2/(2*(1-2*x^2)) - Sum_{n >= 1} phi(n)*log(1-2*x^n)/(2*n). [corrected and extended by Andrey Zabolotskiy, Oct 17 2017]
a(n) = A000031(n)/2 + (if n even) 2^(n/2-2).
EXAMPLE
2 at n=3 because there are two such cycles. On (o -> o -> o ->) and (o -> o <- o ->).
MAPLE
v:=proc(n) local k, t1; t1:=0; for k in divisors(n) do t1 := t1+phi(k)*2^(n/k); od: t1; end;
h:=n-> if n mod 2 = 0 then (n/2)*2^(n/2); else 0; fi;
A053656:=n->(v(n)+h(n))/(2*n); # N. J. A. Sloane, Nov 11 2006
MATHEMATICA
a[n_] := Total[ EulerPhi[#]*2^(n/#)& /@ Divisors[n]]/(2n) + 2^(n/2-2)(1-Mod[n, 2]); Table[a[n], {n, 1, 35}] (* Jean-François Alcover, Nov 21 2011 *)
PROG
(PARI) a(n)={(sumdiv(n, d, eulerphi(d)*2^(n/d))/n + if(n%2==0, 2^(n/2-1)))/2} \\ Andrew Howroyd, Jun 16 2021
CROSSREFS
The 8 sequences in Table 8 of Fujita (2017) are A053656, A000011, A256216, A256217, A123045, A283846, A283847, A283848.
Sequence in context: A110199 A358429 A222736 * A364752 A035054 A099537
KEYWORD
nonn,easy,nice
AUTHOR
Jeb F. Willenbring (jwillenb(AT)ucsd.edu), Feb 14 2000
EXTENSIONS
More terms and additional comments from Christian G. Bower, Dec 13 2001
STATUS
approved