login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of cyclic graphs with oriented edges on n nodes (up to symmetry of dihedral group).
14

%I #59 Aug 25 2024 08:31:28

%S 1,2,2,4,4,9,10,22,30,62,94,192,316,623,1096,2122,3856,7429,13798,

%T 26500,49940,95885,182362,350650,671092,1292762,2485534,4797886,

%U 9256396,17904476,34636834,67126282,130150588,252679832,490853416

%N Number of cyclic graphs with oriented edges on n nodes (up to symmetry of dihedral group).

%C Also number of bracelets (or necklaces) with n red or blue beads such that the beads switch colors when bracelet is turned over.

%C a(n) is also the number of frieze patterns generated by filling a 1 X n block with n copies of an asymmetric motif (where the copies are chosen from original motif or a 180-degree rotated copy) and then repeating the block by translation to produce an infinite frieze pattern. (Pisanski et al.)

%C a(n) is also the number of minimal fibrations of a bidirectional n-cycle over the 2-bouquet up to precompositions with automorphisms of the n-cycle. (Boldi et al.) - _Sebastiano Vigna_, Jan 08 2018

%D Jeb F. Willenbring, A stability result for a Hilbert series of O_n(C) invariants.

%H Seiichi Manyama, <a href="/A053656/b053656.txt">Table of n, a(n) for n = 1..3334</a>

%H Rémi Cocou Avohou, Joseph Ben Geloun, and Reiko Toriumi, <a href="https://doi.org/10.1140/epjc/s10052-024-13091-z">Counting U(N)^{⊗r} ⊗ O(N)^{⊗q} invariants and tensor model observables</a>, Eur. Phys. J. C 84, 839 (2024), see pp. 11, 27; <a href="https://arxiv.org/abs/2404.16404">Preprint arXiv:2404.16404</a> [hep-th], 2024. See pp. 18, 49.

%H Paolo Boldi and Sebastiano Vigna, <a href="https://doi.org/10.1016/S0012-365X(00)00455-6">Fibrations of Graphs</a>, Discrete Math., 243 (2002), 21-66.

%H Shinsaku Fujita, <a href="https://doi.org/10.1246/bcsj.20160369">alpha-beta Itemized Enumeration of Inositol Derivatives and m-Gonal Homologs by Extending Fujita's Proligand Method</a>, Bull. Chem. Soc. Jpn. 2017, 90, 343-366. See Table 8.

%H T. Pisanski, D. Schattschneider, and B. Servatius, <a href="http://www.jstor.org/stable/27642932">Applying Burnside's lemma to a one-dimensional Escher problem</a>, Math. Mag., 79 (2006), 167-180.

%H Jeb F. Willenbring, <a href="https://uwm.edu/math/people/willenbring-jeb/">Home page</a>.

%H A. Yajima, <a href="https://doi.org/10.1246/bcsj.20140204">How to calculate the number of stereoisomers of inositol-homologs</a>, Bull. Chem. Soc. Jpn. 2014, 87, 1260-1264. See Tables 1 and 2 (and text).

%H <a href="/index/Br#bracelets">Index entries for sequences related to bracelets</a>.

%F G.f.: x/(1-x) + x^2/(2*(1-2*x^2)) + Sum_{n >= 1} (x^(2*n)/(2*n)) * Sum_{ d divides n } phi(d)/(1-x^d)^(2*n/d), or x^2/(2*(1-2*x^2)) - Sum_{n >= 1} phi(n)*log(1-2*x^n)/(2*n). [corrected and extended by _Andrey Zabolotskiy_, Oct 17 2017]

%F a(n) = A000031(n)/2 + (if n even) 2^(n/2-2).

%e 2 at n=3 because there are two such cycles. On (o -> o -> o ->) and (o -> o <- o ->).

%p v:=proc(n) local k, t1; t1:=0; for k in divisors(n) do t1 := t1+phi(k)*2^(n/k); od: t1; end;

%p h:=n-> if n mod 2 = 0 then (n/2)*2^(n/2); else 0; fi;

%p A053656:=n->(v(n)+h(n))/(2*n); # _N. J. A. Sloane_, Nov 11 2006

%t a[n_] := Total[ EulerPhi[#]*2^(n/#)& /@ Divisors[n]]/(2n) + 2^(n/2-2)(1-Mod[n, 2]); Table[a[n], {n, 1, 35}] (* _Jean-François Alcover_, Nov 21 2011 *)

%o (PARI) a(n)={(sumdiv(n, d, eulerphi(d)*2^(n/d))/n + if(n%2==0, 2^(n/2-1)))/2} \\ _Andrew Howroyd_, Jun 16 2021

%Y The 8 sequences in Table 8 of Fujita (2017) are A053656, A000011, A256216, A256217, A123045, A283846, A283847, A283848.

%K nonn,easy,nice

%O 1,2

%A Jeb F. Willenbring (jwillenb(AT)ucsd.edu), Feb 14 2000

%E More terms and additional comments from _Christian G. Bower_, Dec 13 2001