login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A283848 Number of n-gonal inositol homologs with 2 kinds of achiral proligands. 9
8, 23, 32, 86, 128, 339, 512, 1332, 2048, 5298, 8192, 21066, 32768, 83987, 131072, 334966, 524288, 1336988, 2097152, 5338206, 8388608, 21321234, 33554432, 85176636, 134217728, 340338398, 536870912, 1360073016, 2147483648, 5435820051, 8589934592, 21727481616, 34359738368, 86853790498, 137438953472 (list; graph; refs; listen; history; text; internal format)
OFFSET
3,1
LINKS
Shinsaku Fujita, alpha-beta Itemized Enumeration of Inositol Derivatives and m-Gonal Homologs by Extending Fujita's Proligand Method, Bull. Chem. Soc. Jpn. 2017, 90, 343-366; doi:10.1246/bcsj.20160369. See Table 8.
FORMULA
If n is even, a(n) = (2*n)^(-1)*Sum_{d|n, d even} phi(d)*4^(n/d) + 5*2^(n-2). - Robert Israel, Aug 23 2018 after Fujita (2017), Eq. (101) (set n=2, m=n).
If n is odd, a(n) = 2^n. For the even bisection see A284711.
MAPLE
f:= proc(n) uses numtheory;
if n::even then (2*n)^(-1)*add(phi(d)*4^(n/d), d=select(type, divisors(n), even))+5*2^(n-2)
else 2^n
fi
end proc:
map(f, [$1..40]); # Robert Israel, Aug 23 2018
MATHEMATICA
a[n_] := If[EvenQ[n], (2n)^(-1) Sum[EulerPhi[d] 4^(n/d), {d, Select[ Divisors[n], EvenQ]}] + 5*2^(n-2), 2^n];
Table[a[n], {n, 3, 40}] (* Jean-François Alcover, Mar 23 2019, after Robert Israel *)
PROG
(PARI) a(n) = if (n%2, 2^n, (2*n)^(-1)*sumdiv(n, d, if (!(d%2), eulerphi(d)*4^(n/d))) + 5*2^(n-2)); \\ Michel Marcus, Mar 23 2019
CROSSREFS
The 8 sequences in Table 8 of Fujita (2017) are A053656, A000011, A256216, A256217, A123045, A283846, A283847, A283848.
Sequence in context: A022420 A326741 A034811 * A341770 A287167 A253975
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 01 2017
EXTENSIONS
Edited and more terms by Robert Israel, Aug 23 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 20 15:33 EDT 2024. Contains 374459 sequences. (Running on oeis4.)