OFFSET
3,1
LINKS
Robert Israel, Table of n, a(n) for n = 3..3318
Shinsaku Fujita, alpha-beta Itemized Enumeration of Inositol Derivatives and m-Gonal Homologs by Extending Fujita's Proligand Method, Bull. Chem. Soc. Jpn. 2017, 90, 343-366; doi:10.1246/bcsj.20160369. See Table 8.
FORMULA
If n is even, a(n) = (2*n)^(-1)*Sum_{d|n, d even} phi(d)*4^(n/d) + 5*2^(n-2). - Robert Israel, Aug 23 2018 after Fujita (2017), Eq. (101) (set n=2, m=n).
If n is odd, a(n) = 2^n. For the even bisection see A284711.
MAPLE
f:= proc(n) uses numtheory;
if n::even then (2*n)^(-1)*add(phi(d)*4^(n/d), d=select(type, divisors(n), even))+5*2^(n-2)
else 2^n
fi
end proc:
map(f, [$1..40]); # Robert Israel, Aug 23 2018
MATHEMATICA
a[n_] := If[EvenQ[n], (2n)^(-1) Sum[EulerPhi[d] 4^(n/d), {d, Select[ Divisors[n], EvenQ]}] + 5*2^(n-2), 2^n];
Table[a[n], {n, 3, 40}] (* Jean-François Alcover, Mar 23 2019, after Robert Israel *)
PROG
(PARI) a(n) = if (n%2, 2^n, (2*n)^(-1)*sumdiv(n, d, if (!(d%2), eulerphi(d)*4^(n/d))) + 5*2^(n-2)); \\ Michel Marcus, Mar 23 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 01 2017
EXTENSIONS
Edited and more terms by Robert Israel, Aug 23 2018
STATUS
approved